x`ƒÊ+Bm.……Êmm`.ÁÁ†B›?$$ô)fiBƒáÊ ëÔÔ)"B˙ÁÊ›Ê)ƒô)ÊBÁÊ`ƒBÁ.)?+BÔ+7ôƒB?)˝ 7Êfi?)BôƒmBäÔ.+)ʆBƒÔBîÊÔfi+?$áÔmBÔ) ë?†BZ·BI)Bë?†B{"BáÔ∑Ê<Ê+"BÔ)ÊBÔ` ƒáÊBÔ)•7Ô?+˝B$+Ô…ÊmmÔ+mB`?ôÁÊ˝B?)˝ ƒ.+)Ê˝Bô)BƒáÊB?ƒƒôƒ.˝Ê•…Ô)ƒ+ÔÁBƒá+.mƒÊ+m" ∑áô…áBmÊ)ƒBƒáÊBm$?…Ê…+?`ƒBô)ƒÔB?Bm$ô) *,¸B+Ê<ÔÁ.ƒôÔ)m@›ô).ƒÊ1·B«á?ƒB`?ôÁ.+Ê ˝+?ô)Ê˝BƒáÊB?ƒƒôƒ.˝Ê•…Ô)ƒ+ÔÁBm†mƒÊ›BÔ` ôƒmB`.ÊÁB*?ÁƒáÔ.fiáBƒáÊ+ÊB∑?mBmƒôÁÁB`.ÊÁ `Ô+BƒáÊB›?ô)Bƒá+.mƒÊ+1"BÊ``Ê…ƒô<ÊÁ† …?)…ÊÁô)fiBƒáÊBîÊÔfi+?$áÔmB$Ô+ƒôÔ)BÔ` ƒáÊB›ômỏÔ)·BxƒBƒáômB?)fi.Á?+B<ÊÁÔ…ôƒ†" ˙ÁÊ›Ê)ƒô)ÊB…Ô.Á˝BmƒôÁÁBá?<ÊB`ÁÔ∑)BƒÔ îÊÔfi+?$áÔm"B7.ƒBôƒB∑Ô.Á˝B)ÔƒBá?<Ê ƒ?…2B.mÊ`.ÁBô›?fiÊm"B?)˝B…Ô)ƒ?…ƒ ∑ôƒáBôƒB$+Ô7?7Á†B∑Ô.Á˝Bá?<ÊB7ÊÊ)BÁÔmƒ· xmB?B+Êm.Áƒ"B˙ÁÊ›Ê)ƒô)ÊBm$Ê)ƒBôƒmB`ô)?Á ˝?†mBÔ+7ôƒô)fiB[?+ƒá"B…Ô)ƒô).ô)fiBƒÔ …ÔÁÁÊ…ƒBẢo`ʃô›ÊB˝?ƒ?BÔ)BƒáÊB)Ê∑B Ô)•7Ô?+˝ ƒÊ…á)ÔÁÔfiôÊm·BxÁƒáÔ.fiáBƒáÊ ?mƒÊ+Ôô˝B$Ô+ƒôÔ)BÔ`BƒáÊB›ômỏÔ)B∑?mB)Ôƒ …Ô›$ÁÊƒÊ˝"BƒáÊB$+ô)…ô$?ÁBô)mƒ+.›Ê)ƒm ?)˝BmÊ)mÔ+mB`.)…ƒôÔ)Ê˝BÊrƒ+Ê›ÊÁ† ∑ÊÁÁ"B?)˝B˙ÁÊ›Ê)ƒô)ÊBômB<ôÊ∑Ê˝B?mB? Á?)˝›?+2 $+ÔäÊ…ƒBô)BƒÊ+›mBÔ`B…Ômƒ Ê``Ê…ƒô<Ê)ÊmmB?)˝BôƒmB˝Ê›Ô)mƒ+?ƒôÔ) Ô`B)Êrƒ•fiÊ)Ê+?ƒôÔ)B…Ô›$Ô)Ê)ƒmB?)˝ ƒÊ…á)ÔÁÔfiôÊm·
1 Department of Physics, University of Kontanz, Universit € AtsTraße 10, 78464 Konstanz, Germany 2 Nest, Nanoscienze-Cnr Institute Normal School, Piazza San Silvestro 12, 56127 Pisa, Italy 3 MTA-BME SuperConducting Nanoelectronics Momentum Research Group, M € M € M € M € Ugyetem RKP。 3.,1111布达佩斯,匈牙利4物理系,布达佩斯大学技术与经济学,M€uegyetem RKP。 3.,1111 Budapest,匈牙利5物理学系,科学系,许多大学,Al-Geish St.,31527 Tanta,Gharbia,Gharbia,Gharbia,埃及6 Microtechnology and Nanoscience系,Chalmers Technology,41296 g 41296 g欧特伯格,Sweden 7 Cnr cnr cnr cnr cnr cn. Paolo II 132,84084 Fisciano,意大利萨勒诺市8物理学系“ E. R. Caianiello”,萨勒诺研究的大学,通过Giovanni Paolo II 132,84084 Fisciano,salerno,意大利,意大利> > >1 Department of Physics, University of Kontanz, Universit € AtsTraße 10, 78464 Konstanz, Germany 2 Nest, Nanoscienze-Cnr Institute Normal School, Piazza San Silvestro 12, 56127 Pisa, Italy 3 MTA-BME SuperConducting Nanoelectronics Momentum Research Group, M € M € M € M € Ugyetem RKP。3.,1111布达佩斯,匈牙利4物理系,布达佩斯大学技术与经济学,M€uegyetem RKP。3.,1111 Budapest,匈牙利5物理学系,科学系,许多大学,Al-Geish St.,31527 Tanta,Gharbia,Gharbia,Gharbia,埃及6 Microtechnology and Nanoscience系,Chalmers Technology,41296 g 41296 g欧特伯格,Sweden 7 Cnr cnr cnr cnr cnr cn. Paolo II 132,84084 Fisciano,意大利萨勒诺市8物理学系“ E. R. Caianiello”,萨勒诺研究的大学,通过Giovanni Paolo II 132,84084 Fisciano,salerno,意大利,意大利> > >
我们表明,由所有一位量子门(u(u(2))组成的一组门和两位独家或门(将布尔值(x,y)映射到(x,x,x,x,x,y))在所有对所有统一操作上都可以在任意的n(u(2 n)上都可以表达为这些gates的构图。我们调查了实现其他门所需的上述门的数量,例如通用的deutsch-to oli门,这些门将特定的U(2)适用于一个输入位,并且仅当逻辑和所有其余所有输入位时,就满足了一个输入位。这些门在许多量子构造网络的构造中起着核心作用。我们在建立各种两位和三位数的大门所需的基本门数量上得出了上限和下限,这是n-bit deutsch-to to oli大门所需的渐近数,并就任意n-bit n-bit单位操作所需的数量进行了一些观察。PACS编号:03.65.ca,07.05.bx,02.70.rw,89.80。+H
摘要 - 使用Double-Gate(DG)MOSFET设计了差分交叉耦合电压控制的振荡器(VCO)。DG MOSFET具有高噪声图的出色噪声免疫力,适用于低功率,高频应用。该提出的VCO是使用差分拓扑设计的,具有提高功耗,设计灵活性和降低噪音的提高。这也提高了现有差分放大器的高频性能。此后,将提出的VCO与制造和设计方法进行了比较,尤其是基于硅的CMOS和单栅(SG)MOSFET VCOS(可能)的替代方法。遵循各种印刷电路板(PCB)设计实践,以最大程度地减少噪声并提高电路的整体效率。进行该VCO分析的关键参数是功率的输出功率,相位噪声和数字,在峰值处已实现为-2.91 dbm和1 MHz的-69.79 dbc/hz。设计VCO的功耗为36兆瓦。关键字 - MOSFET,双门MOSFET,差分放大器,微电子,纳米技术,VLSI,VCO。1。简介
背景:通过鼻吸附对鼻衬液(NLF)采样最少侵入性且耐受性良好,但是使用此技术评估鼻微生物组的可行性尚不清楚。但是,低生物量使气道样品特别容易受到与污染物DNA有关的问题。在这项研究中,我们评估了使用方法学对低生物量呼吸样品分离的DNA的适用性,并评估了与传统的拭子采样方法相比,通过鼻吸附收集的衬里液的衬里如何捕获鼻微生物的多样性和组成。方法:从成年志愿者那里收集鼻拭子和NLF。DNA。评估DNA的质量和数量,并进行了短阅读16S rRNA测序,以评估可行性和提取偏见。然后使用优化的提取方法从NLF和鼻拭子中提取DNA,并且进行了全长16S rRNA测序,以比较NLF和鼻拭子之间的微生物谱。使用NF核/Ampliseq管道,PacificBiosciences/PB-16S-NF管道或软件EMU分类分类法分类,并使用R Packages Temages and Mixomics进行下游分析。结果:所有提取方法均从模拟群落中恢复了DNA,但仅基于降水的方法从NLF产生了足够的DNA。提取方法显着影响微生物谱,需要机械裂解以最大程度地减少针对特定属的偏差。曲线与长读测序相当。结论:我们的发现证明了使用通过鼻吸附收集的NLF分析鼻微生物组的可行性,并验证了两种提取方法,作为适合全长的16S rRNA测序的低生物量呼吸类样品的RRNA测序。我们的数据证明了在低生物量呼吸样品中无偏DNA提取方法的重要性,以及随后DNA提取对观察到的微生物谱的影响。此外,我们证明了NLF可能是使用16S rRNA测序评估鼻拭子的适当替代样品。
摘要:粘膜疫苗接种似乎适合防止SARS-COV-2感染。在这项研究中,我们测试了COVID-19的鼻内粘膜疫苗候选者,该疫苗由阳离子脂质体组成,该阳离子脂质体含有三聚体SARS-COV-2尖峰蛋白和CPG-ODN,CPG-ODN,Toll-Like受体9激动剂,作为辅助物。在体外和体内实验表明该疫苗配方鼻内给药后没有毒性。首先,我们发现皮下或鼻内疫苗接种保护HACE-2转基因小鼠免受野生型(Wuhan)SARS-COV-2菌株的感染,如体重损失和死亡率指标所示。然而,与皮下给药相比,鼻内途径在病毒的肺清除率中更有效,并诱导了较高的中和抗体和抗S IgA滴度。此外,鼻内疫苗接种为关注的伽马,三角洲和Omicron病毒变体提供了保护。Furthermore, the intranasal vaccine formulation was superior to intramuscular vaccination with a recombinant, replication-deficient chimpanzee adenovirus vector encoding the SARS-CoV-2 spike glycoprotein (Oxford/AstraZeneca) in terms of virus lung clearance and production of neutralizing antibodies in serum and bronchial alveolar lavage (BAL).最后,鼻内脂质体配方促进了先前肌肉内疫苗接种与牛津/阿斯利康疫苗诱导的异源免疫力,该疫苗比同源免疫更强大。
摘要:血清白蛋白在各种类型的配方中的应用已成为生物医学研究中的宝贵选择,尤其是在鼻药物输送系统领域。由于多种好处,已经采用了基于血清白蛋白的载体系统,例如增强药物溶解度和稳定性,产生所需的受控释放曲线,并就鼻部条件中的挑战开发有利的特性,在这种情况下,这涉及由于鼻腔粘膜切除率而导致的快速消除。相应地,考虑到血清白蛋白的重要作用,强烈鼓励与其在制备鼻药制剂中的利用相关的深入知识。本综述旨在探讨血清白蛋白在制造鼻药制剂中的潜在应用及其在与鼻粘蛋白的结合相互作用方面的关键作用和功能,这显着确定了成功地施用鼻药物制剂。
Wernicke的脑病是由硫胺素(维生素B1)缺乏引起的神经系统紧急事件。Wernicke脑病的体征和症状可能包括共济失调,心理状况变化和眼科治疗(例如,Nystagmus,Coveropia)。任何心理状况,混乱或记忆力障碍的任何变化都应引起人们对潜在脑病(包括Wernicke's)的关注,并迅速进行全面评估,包括神经系统检查,硫胺素水平的评估和成像。在开始无线电前的所有患者中评估硫胺素水平。不要在硫胺素缺乏症的患者中开始使用无需。但是,如果硫胺素水平较低,则在开始治疗之前填充硫胺素。在治疗时,所有患者应接受口服硫胺素的预防,并应按照临床表明的硫胺素水平进行评估。如果怀疑脑病,请立即终止并启动肠胃外硫胺素。监测直到症状解决或改善,硫胺素水平正常化[见剂量和给药(2.7)和不良反应(6.1)]。