量子比特测量是量子信息处理的核心。在超导量子比特领域,标准读出技术不仅受信噪比的限制,还受测量过程中状态弛豫的限制。在这项工作中,我们证明,通过使用超导电路的多层希尔伯特空间,可以抑制由于弛豫而导致的限制:在多级编码中,只有当出现多个错误时,测量才会被破坏。利用这种技术,我们表明,我们可以直接解决 10 3 分之一级别的 transmon 门错误。扩展了这个想法,我们将相同的原理应用于以玻色子模式编码并用 transmon ancilla 检测的逻辑量子比特的测量,实现了 Hann 等人的提议 [ Phys. Rev. A 98 , 022305 (2018) ]。量子比特状态分配基于一系列重复读出,进一步降低了整体不保真度。这种方法非常通用,并且研究了几种编码;当码字之间的距离相对于光子损失增加时,码字更容易区分。探索了多次读出和状态弛豫之间的权衡,并表明其与光子损失模型一致。我们报告了基于 Fock 的编码的逻辑分配不保真度为 5 . 8 × 10 − 5,量子纠错码(S = 2 ,N = 1 二项式码)的逻辑分配不保真度为 4 . 2 × 10 − 3。我们的结果不仅提高了量子信息应用的保真度,而且还能够更精确地表征过程或门错误。
主要关键词