Loading...
机构名称:
¥ 2.0

近年来,在机器学习和人工智能的融合推动下,脑电图 (EEG) 分析领域取得了显著进步。本综述旨在概括最新发展,重点介绍有望改变我们对大脑活动的理解和解释的新兴方法和技术。我们深入研究了能够稳健地表示大脑信号的自监督学习方法,这对于各种下游应用至关重要。我们还探索了新兴的判别方法,包括图神经网络 (GNN)、基础模型和基于大型语言模型 (LLM) 的方法。此外,我们还研究了利用 EEG 数据生成图像或文本的生成技术,为大脑活动可视化和解释提供了新的视角。本调查对这些前沿技术、其当前应用以及它们对未来研究和临床实践的深远影响进行了广泛的概述。相关文献和开源材料已汇编并不断更新,网址为 https://github.com/wpf535236337/LLMs4TS

时空脑电图数据分析调查

时空脑电图数据分析调查PDF文件第1页

时空脑电图数据分析调查PDF文件第2页

时空脑电图数据分析调查PDF文件第3页

时空脑电图数据分析调查PDF文件第4页

时空脑电图数据分析调查PDF文件第5页

相关文件推荐