人工智能的不断发展对生物医学等领域产生了深远的影响,提供了新的研究思路和技术方法。类脑计算是多模态技术与生物医学领域的重要交叉点。本文聚焦人机交互中脑信号解码文本和语音的应用场景,全面回顾了基于深度学习的类脑计算模型,追踪了其演进、应用价值、挑战和潜在的研究趋势。首先回顾了其基本概念和发展历史,将其演进分为近代机器学习和当代深度学习两个阶段,强调了每个阶段在人机交互类脑计算研究中的重要性。此外,从数据集、不同脑信号等五个角度回顾了深度学习在人机交互类脑计算不同任务中的最新进展,并详细阐述了模型中关键技术的应用。尽管类脑计算模型取得了重大进展,但充分发挥其能力仍面临挑战,并为未来的学术研究提供了可能的方向。欲了解更详细信息,请访问我们的 GitHub 页面:https://github.com/ultracoolHub/brain-inspired-computing。
主要关键词