摘要:稳态的视觉诱发电位(SSVEP)是脑电图中与事件相关的潜力(EEG),已应用于大脑 - 计算机接口(BCIS)。基于SSVEP的BCIS目前在各种BCI实施方法中在信息传输率(ITR)方面表现最好。规范组件分析(CCA)或频谱估计(例如傅立叶变换及其扩展)已用于提取SSVEP的特征。但是,这些信号提取方法在可用的刺激频率上有限制。因此,命令的数量有限。在本文中,我们提出了一个复杂的有价值的卷积神经网络(CVCNN),以克服基于SSVEP的BCI的限制。实验结果表明,所提出的方法克服了刺激频率的限制,并且表现优于常规的SSVEP特征提取方法。
主要关键词