摘要 — 脑机接口 (BCI) 是人与计算机之间的通信系统,无需使用物理控制设备即可反映人的意图。由于深度学习在从数据中提取特征方面具有很强的鲁棒性,因此在 BCI 领域应用深度学习解码脑电图的研究已经取得了进展。然而,深度学习在 BCI 领域的应用存在数据不足和过度自信的问题。为了解决这些问题,我们提出了一种新颖的数据增强方法 CropCat。CropCat 包含两个版本,CropCat-spatial 和 CropCat-temporal。我们通过在裁剪数据后连接裁剪后的数据来设计我们的方法,这些数据在空间和时间轴上具有不同的标签。此外,我们根据裁剪长度的比率调整标签。结果,我们提出的方法生成的数据有助于将因数据不足而导致的模糊决策边界修改为明显的。由于所提方法的有效性,与未应用所提方法相比,四个脑电信号解码模型在两个运动想象公共数据集上的性能得到了提高。因此,我们证明了 CropCat 生成的数据在训练模型时平滑了脑电信号的特征分布。关键词–脑机接口,脑电图,数据增强,运动想象;
主要关键词