Loading...
机构名称:
¥ 1.0

研究问题的简介DLRL方向查找器(DF)系统当前使用方位角轴承来识别频率料斗信号,并在三个类别中对检测到的信号进行分类,即固定频率(FF),频率料斗(FH)和爆发。DF系统在频域中进行扫描,并执行所有检测到的信号的DF。由于信号处理是基于框架/批次的,并在频域中进行,并且在每个通道中并行,因此爆发和单个啤酒花的时间持续时间估计的准确性受到限制,因此,快速料斗的Hop速率估计值不准确。使用来自两个或五个DF天线中的每个DF天线中的时域iQ数据基于深度学习/机器学习的算法,以将接收的信号分类为FF,FF和爆发。培训数据需要由适当的数学模型生成,该模型应允许引入噪声和褪色。产生的信号应允许以瞬时带宽内的不同频率同时存在多个信号。预计它将能够估算200个微秒的次数和爆发持续时间。需要使用仿真验证所提出的方法的性能,并使用使用商业阶段相干的信号采集硬件(最少2个通道)生成或捕获的数据在工作站/笔记本电脑或PC上测试。dlrl寻求与学术机构一起开发和实施复杂的统计数字信号处理算法的解决方案。

惯性导航系统(IMU/INS)RCI本地为...

惯性导航系统(IMU/INS)RCI本地为...PDF文件第1页

惯性导航系统(IMU/INS)RCI本地为...PDF文件第2页

惯性导航系统(IMU/INS)RCI本地为...PDF文件第3页

惯性导航系统(IMU/INS)RCI本地为...PDF文件第4页

惯性导航系统(IMU/INS)RCI本地为...PDF文件第5页

相关文件推荐

2023 年
¥1.0