Loading...
机构名称:
¥ 1.0

抽象机器学习分类模型学习输入作为特征和输出作为类的关系,以预测新给定输入的类。几项研究工作证明了机器学习算法的有效性,但最新的算法基于概率和逻辑的经典理论。量子力学(QM)已经在许多领域显示其有效性,研究人员提出了几个有趣的结果,这些结果无法通过经典理论获得。近年来,研究人员一直在尝试调查QM是否可以帮助改善经典的机器学习算法。认为,如果正确实施QM理论也可能会激发有效的算法。从这种灵感中,我们提出了量子启发的二进制分类器,该分类基于量子检测理论。我们使用文本语料库和图像库来探索我们提出的模型的效果。我们提出的模型在20个新闻组文本语料库中的几个主题(类别)方面优于最先进的模型。当使用MNIST手写图像数据集时,我们所提出的模型在召回方面优于所有基准。对于大多数类别而言,F量也更高,对于某些类别,精度也更高。我们提出的模型表明,使用量子检测理论可以实现二元分类效果。特别是,我们发现我们的量子启发的二进制分类器可以增加分类的精度,回忆和f量表,而最先进的方法不能。

面向量子启发式二元分类器

面向量子启发式二元分类器PDF文件第1页

面向量子启发式二元分类器PDF文件第2页

面向量子启发式二元分类器PDF文件第3页

面向量子启发式二元分类器PDF文件第4页

面向量子启发式二元分类器PDF文件第5页

相关文件推荐

2024 年
¥2.0
2021 年
¥2.0
2020 年
¥1.0
2023 年
¥6.0
2025 年
¥1.0