本文提出了一个新的算法追索(AR)框架,即使在缺少值的情况下也可以工作。AR旨在提供一个追索行动,以改变分类器给定的不需要的预测结果。现有的AR方法假设我们可以访问有关输入实例功能的完整信息。但是,我们经常在给定实例中遇到缺失值(例如,由于隐私问题),以前的研究没有讨论这种实际情况。在本文中,我们首先从经验和理论上表明了一种具有单一插补技术的天真方法无法获得有关其有效性,成本和特征要改变的良好动作的风险。为了减轻这种风险,我们通过纳入多个插补的想法来制定为给定的不完整实例获得有效和低成本动作的任务。然后,我们提供了一些关于任务的理论分析,并提出了基于混合企业线性优化的实用解决方案。实验结果证明了与基准相比,我们方法在缺少值的情况下的功效。
主要关键词