- 第一个转换字节A = 10001000对应于多项式A(x)= x 7 + x 3。现在有必要计算相对于M(x)的多项式的乘法逆。为此,可以使用欧几里得扩展算法:x 8 + x 4 + x 3 + x + x + x + x + 1 = x(x 7 + x 3) + x 3 + x 3 + x + x + 1 x 7 + x 3 =(x 4 + x 2 + x)(x 4 + x 2 + x)(x 3 + x + x + x 3 + x 3 + x 3 + x + x + x + x + 1 =(x 2 + 1)x + 1) (x 3 + x + 1) - (x 2 + 1) [(x 7 + x 3 ) - (x 4 + x 2 + x)( x 3 + x + 1)] 1= (x 3 + x + 1) - (x 2 + 1)(x 7 + x 3 ) + (x 6 + x 4 + x 3 + x 4 + x 2 + x) ( x 3 + x + 1) 1= - (x 2 + 1)(x 7 + x 3 ) + (x 3 + x + 1) (x 6 + x 3 + x 2 + x +1)1 = - (x 2 + 1)(x 7 + x 3) + [(x 8 + x 4 + x 4 + x 3 + x + 1) - x(x 7 + x 3)](x 6 + x 3 + x 3 + x 2 + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x + x = - (x 2 + 1) 7 + x 4 + x 3 + x 2 + x) (x 7 + x 3 ) 1= (x 6 + x 3 + x 2 + x +1) (x 8 + x 4 + x 3 + x + 1) - (x 7 + x 3 ) [(x 2 + 1) + (x 7 + x 4 + x 3 + x 2 + x)] 1= (x 6 + x 3 + x 2 + x +1) (x 8 + x 4 + x 3 + x + 1) - (x 7 + x 3)(x 7 + x 4 + x 3 + x +1)1 =(x 6 + x 3 + x 2 + x +1)(m(x)) - (a(x))(x 7 + x 4 + x 4 + x 3 + x + x + 1)inv(x 7 + x 3)mod。m(x)=(x 7 + x 4 + x 3 + x +1)结果是x 7 + x 4 + x 4 + x 3 + x + 1。因此,第一个转换的输出为x = 10011011