TensorFlow关键词检索结果

TensorFlow 特征列:以配方方式转换数据

TensorFlow feature columns: Transforming your data recipes-style

TensorFlow 特征列提供了有用的功能,可用于预处理分类数据和链接转换,例如分桶或特征交叉。从 R 中,我们以流行的“配方”风格使用它们,创建并随后完善特征规范。在这篇文章中,我们展示了如何使用特征规范释放认知资源并让您专注于真正想要完成的事情。更重要的是,由于其优雅,特征规范代码读起来很好,编写起来也很有趣。

Rajat Monga:TensorFlow

Rajat Monga: TensorFlow

Rajat Monga 是 Google 的工程总监,领导 TensorFlow 团队。如果您想获取有关此播客的更多信息,请访问 https://lexfridman.com/ai 或在 Twitter、LinkedIn、Facebook、Medium 或 YouTube 上与 @lexfridman 联系,您可以在那里观看这些对话的视频版本。

分层部分池化,续:使用 TensorFlow Probability 改变斜率模型

Hierarchical partial pooling, continued: Varying slopes models with TensorFlow Probability

这篇文章以我们最近介绍的 tfprobability(TensorFlow Probability 的 R 包装器)进行多级建模为基础。我们展示了如何汇集平均值(“截距”)和关系(“斜率”),从而使模型能够以更广泛的方式从数据中学习。同样,我们使用了 Richard McElreath 的“Statistical Rethinking”中的一个例子;术语以及我们呈现这个主题的方式很大程度上归功于这本书。

TensorFlow 上的 Tadpoles:使用 tfprobability 进行分层部分池化

Tadpoles on TensorFlow: Hierarchical partial pooling with tfprobability

这篇文章首次介绍了使用 tfprobability(TensorFlow Probability (TFP) 的 R 接口)进行 MCMC 建模。我们的示例是一个描述蝌蚪死亡率的多级模型,读者可能从 Richard McElreath 的精彩作品“统计反思”中了解到这一点。

在 TensorFlow Probability 中使用自回归流进行实验

Experimenting with autoregressive flows in TensorFlow Probability

继最近对 TensorFlow Probability (TFP) 中的双射函数的介绍之后,这篇文章将自回归引入了讨论。通过新的 R 包 tfprobability 使用 TFP,我们研究了掩蔽自回归流 (MAF) 的实现,并将其用于两个不同的数据集。

进入流程:TensorFlow Probability 中的双射器

Getting into the flow: Bijectors in TensorFlow Probability

规范化流是无监督深度学习中鲜为人知但却令人着迷且成功的架构之一。在这篇文章中,我们使用 tfprobability(TensorFlow Probability 的 R 包装器)对流程进行了基本介绍。后续文章将在此基础上进行构建,在更复杂的数据上使用更复杂的流程。

使用 VQ-VAE 和 TensorFlow Probability 进行离散表示学习

Discrete Representation Learning with VQ-VAE and TensorFlow Probability

在考虑变分自动编码器 (VAE) 时,我们通常会将先验描绘为各向同性的高斯。但这绝不是必需的。van den Oord 等人的“神经离散表示学习”中描述的矢量量化变分自动编码器 (VQ-VAE) 具有离散潜在空间,可以学习令人印象深刻的简洁潜在表示。在这篇文章中,我们结合了 Keras、TensorFlow 和 TensorFlow Probability 的元素,看看我们是否可以生成与 Kuzushiji-MNIST 中的字母相似的令人信服的字母。

从 R 开始使用 TensorFlow Probability

Getting started with TensorFlow Probability from R

TensorFlow Probability 提供了广泛的功能,从概率网络层上的分布到概率推理。它与核心 TensorFlow 和 (TensorFlow) Keras 无缝协作。在这篇文章中,我们简要介绍了分布层,然后使用它在变分自动编码器中采样和计算概率。

使用 TensorFlow Eage Execution 和 Keras 实现更灵活的模型

More flexible models with TensorFlow eager execution and Keras

生成对抗网络、神经风格迁移和自然语言处理中无处不在的注意力机制等高级应用过去很难用 Keras 声明式编码范式实现。现在,随着 TensorFlow Eage Execution 的出现,情况发生了变化。这篇文章探讨了如何在 R 中使用 Eage Execution。

使用 Keras 和 TensorFlow Eage Execution 生成图像

Generating images with Keras and TensorFlow eager execution

生成对抗网络 (GAN) 是一种流行的深度学习方法,用于生成新实体(通常但并非总是图像)。我们展示了如何使用 Keras 和 TensorFlow Eager Execution 对它们进行编码。

tfruns:TensorFlow 训练运行工具

tfruns: Tools for TensorFlow Training Runs

tfruns 包提供了一套工具,用于跟踪、可视化和管理来自 R 的 TensorFlow 训练运行和实验。

TensorFlow 估算器

TensorFlow Estimators

tfestimators 包是 TensorFlow Estimators 的 R 接口,TensorFlow Estimators 是一个高级 API,提供许多不同模型类型的实现,包括线性模型和深度神经网络。

TensorFlow v1.3 发布

TensorFlow v1.3 Released

TensorFlow v1.3 的最终版本现已推出。此版本标志着包括 DNNClassifier 和 DNNRegressor 在内的几个预装估算器的首次推出。

预测能力得分:计算、优点、缺点和 JavaScript 代码

Predictive Power Score: Calculation, Pros, Cons, and JavaScript Code

该项目旨在了解一般相关性,并使用 Brain.js 和 Tensorflow.js 在 Web 浏览器中测试神经网络继续阅读 Towards Data Science »

微型神经网络如何表示基本函数

How Tiny Neural Networks Represent Basic Functions

通过简单的算法示例对机械可解释性进行简单介绍简介本文展示了小型人工神经网络 (NN) 如何表示基本功能。目标是提供有关 NN 工作原理的基本直觉,并作为机械可解释性的简单介绍——该领域旨在对 NN 进行逆向工程。我提供了三个基本函数的示例,使用简单的算法描述了每个函数,并展示了如何将算法“编码”到神经网络的权重中。然后,我探索网络是否可以使用反向传播来学习算法。我鼓励读者将每个示例视为一个谜语,并在阅读解决方案之前花一点时间。机器学习拓扑本文尝试将 NN 分解为离散操作并将其描述为算法。另一种方法可能更常见、更自然,即研究不同层中线性变换的连续拓扑解释。以下是一些有助于增强拓扑直觉的优秀资源:

如何在行业中成为一名成功的机器学习工程师

How to Succeed as a Machine Learning Engineer in the Industry

5 条帮助我在 BigTech 不断超越期望的提示您是否想过要成为一名成功的机器学习工程师需要什么?您是否很难确定自己在这个充满活力的领域中的角色?我也有过这样的经历!嗨!我是 Kartik Singhal,Meta 的高级机器学习工程师。凭借在该领域的六年经验,我仍然发现自己每天都在学习。今天,我将分享五条秘诀,这些秘诀帮助我在 BigTech 担任高级机器学习工程师期间获得了“超出预期”的评级。💻 构建基础图片作者,来自 ChatGPT 4o 您需要很好地理解机器学习基础知识,并意识到其在实际应用中的局限性。了解核心概念:掌握监督学习与无监督学习、分类与回归的基础知识,以及深度学习的基础知

自动量子电路

Auto Quantum Circuits

«AutoQML,自组装电路,超参数化量子 ML 平台,使用 cirq、tensorflow 和 tfq。数以万亿的可能的量子比特注册表、门组合和矩序列,随时可以适应您的 ML 流程。在这里,我展示了气候变化、詹姆斯韦伯太空望远镜和微生物学视觉应用……[到目前为止,根据我的指标混合,具有 16 个量子比特和 [ YY ] - [ XX ] - [CNOT] 门序列的电路表现最佳...]。

Que haja luz:为 torch 点亮更多光芒!

Que haja luz: More light for torch!

今天,我们介绍 luz,它是 torch 的高级接口,可让您以简洁、声明式的风格训练神经网络。从某种意义上说,它之于 torch 就像 Keras 之于 TensorFlow:它既提供了简化的工作流程,也提供了强大的自定义方式。