码器关键词检索结果

详细解释变分自动编码器

Variational Autoencoders Explained in Detail

了解实现变分自动编码器所需的所有细节,包括代码。

变分自动编码器的混合 - MoE 与 VAE 的融合

Mixture of Variational Autoencoders - a Fusion Between MoE and VAE

一种无监督的数字分类和生成方法。

神经编解码器语言模型 - VALL-E 可以从三秒的录音中重现声音

A neural codec language model - VALL-E can reproduce a voice from a three-second audio recording

文本转语音模型通常需要更长的训练样本,而 VALL-E 只需几秒钟就能创造出听起来更自然的合成语音。

自动编码器简介以及常见问题和挑战

Introduction to Autoencoders and Common Issues and Challenges

为什么重要:自动编码器是一种人工神经深度网络,它使用无监督机器学习来有效地编码和压缩数据。

JAX vs Tensorflow vs Pytorch:构建变分自动编码器 (VAE)

JAX vs Tensorflow vs Pytorch: Building a Variational Autoencoder (VAE)

在从头开始开发和训练变分自动编码器时,对 JAX、Tensorflow 和 Pytorch 进行并排比较

潜在变量模型背后的理论:制定变分自动编码器

The theory behind Latent Variable Models: formulating a Variational Autoencoder

解释生成学习和潜在变量模型背后的数学原理以及变分自动编码器 (VAE) 的制定方式(包括代码)

Deepfakes:使用 GAN 和自动编码器进行人脸合成

Deepfakes: Face synthesis with GANs and Autoencoders

深入了解 Deepfakes:使用 StyleGAN 进行人脸合成、使用 XceptionNet 进行人脸交换以及使用 StarGAN 进行面部属性和表情操纵

如何使用自动编码器生成图像

How to Generate Images using Autoencoders

了解什么是自动编码器并构建一个来生成新图像

使用自动编码器和 Keras 预测欺诈

Predicting Fraud with Autoencoders and Keras

在本文中,我们将训练一个自动编码器来检测信用卡欺诈。我们还将演示如何使用 CloudML 在云中训练 Keras 模型。我们模型的基础将是 Kaggle 信用卡欺诈检测数据集。

使用亚马逊基岩自定义模型import

Deploy Qwen models with Amazon Bedrock Custom Model Import

现在,您可以为qwen2,qwen2_vl和qwen2_5_vl架构导入自定义权重,包括QWEN 2、2.5编码器,QWEN 2.5 VL和QWQ 32B之类的型号。在这篇文章中,我们介绍了如何使用Amazon BedRock自定义模型导入的如何部署QWEN 2.5型号,这使他们可以在AWS基础架构中以有效的成本在AWS基础架构中使用最先进的AI功能。

经济观察者调查2025年5月 - 当前情况DI在五个月内首次升起,对关税政策挫折的过度担忧〜

景気ウォッチャー調査2025年5月~現状判断DIは5ヵ月ぶりの上昇、関税政策への過度な懸念が後退~

根据内阁办公室于6月9日发布的经济观察者调查,目前的情况DI(季节性调整)在2013年5月的当前情况一个月前增长了1.8分,至44.4,这是五个月内的首次增长。按地区,全国12个地区中有11个升起,而一个地区下降。冲绳(高于上个月的6.8点)的增长最大,而Koshinetsu(低于上个月的2.3点)下降。考虑到当前DI的细分(季节性调整值),家庭趋势为每月相关的差异2.5点,公司趋势每年相关的差异为1.0点,与就业相关的2.5分每年相关差异。考虑到这项调查的结果,内阁办公室一直保持其主题演讲的决定不变,他说:“经济最近恢复了疲软。”在家庭趋势中,与食品和饮料有关的趋势(落后2.3点)下降,但与

经济观察者调查2025年4月 - 自2022年2月以来的最低现状〜

景気ウォッチャー調査2025年4月~現状判断DIは22年2月以来の低水準~

根据内阁办公室在5月12日发布的一项经济观察者调查,2013年4月当前情况的当前情况(季节性调整值)为42.6,上个月的2.5个百分点差异,标志着第四个月的下降,这是自2013年2月以来的最低水平(37.4)。按地区,该国的12个地区数量在2个地区增加,并在10个地区下降。冲绳(上个月的4.3分差)是最大的增长,而Hokuriku(上个月减少了9.7分)。考虑到当前DI的细分(季节性调整值),家庭趋势为每月相关的差异2.8点,公司趋势每年相关的差异为1.7点,与就业相关的损失为1.9分1.9点每年相关的损失。考虑到这项调查的结果,内阁办公室将其基本评级调整为“尽管经济继续缓慢恢复,但最近有弱点

生物杂交机器人破裂:生物学符合机器人的地方

Two new miniature absolute encoders join US Digital’s lineup

MAE4是一种套件式编码器,旨在直接安装在现有轴上,而MA4是轴版。两种模型都提供12位分辨率,并提供模拟或PWM输出的选择。

fastvlm:视觉语言模型的有效愿景

FastVLM: Efficient Vision encoding for Vision Language Models

缩放输入图像分辨率对于增强视觉语言模型(VLM)的性能至关重要,尤其是在文本丰富的图像理解任务中。但是,由于大量令牌和高度编码延迟,流行的视觉编码器(例如VIT)在高分辨率下效率低下。在不同的操作分辨率下,可以沿两个轴优化VLM的视觉编码器:减少编码延迟并最小化传递给LLM的视觉令牌的数量,从而降低整体延迟。基于对互动的综合效率分析…

天然多模型模型的缩放定律

Scaling Laws for Native Multimodal Models

建立可以通过多模式信号有效地感知世界的通用模型一直是一个长期目标。当前的方法涉及分别整合预训练的组件,例如将视觉编码器连接到LLMS和持续的多模式训练。尽管这种方法表现出显着的样本效率,但仍然是一个悬而未决的问题,这是否本质上是优越的。在这项工作中,我们重新审视了本地多模型(NMM)的建筑设计 - 从头开始​​训练的人 - 并进行广泛的……

逐步扩散:基本教程

Step-by-Step Diffusion: An Elementary Tutorial

我们提供了一门关于扩散模型数学和机器学习流程匹配的可访问的第一门课程。我们的目标是尽可能简单地教授扩散,以最少的数学和机器学习先决条件,但足够的技术细节来理解其正确性。与大多数有关该主题的教程不同,我们既不采用变异自动编码器(VAE),也不采用随机微分方程(SDE)方法。实际上,对于核心思想,我们将不需要任何SDE,基于证据的降低器(ELBOS),Langevin Dynamics,甚至分数的概念。读者只需要…

deepcoder:达到O3-Mini性能的开源AI

DeepCoder: Open Source AI som når O3-mini Prestanda

AI世界正在以愤怒的速度移动,在代码生成领域,我们一直在看到新的,令人兴奋的工具和模型出现。引起关注的最新添加之一是DeepCoder一种新的AI模型,其中140亿个参数作为开源代码发布。使深编码器变得更加有趣的是,[…]邮政深编码器:开放源代码AI首次出现在AI新闻中。

jpeg ai模糊了真实和合成之间的界线

JPEG AI Blurs the Line Between Real and Synthetic

在今年2月,JPEG AI国际标准发布了几年的研究,旨在使用机器学习技术生产较小,更容易传播和可传播的图像编解码器,而不会损失感知质量。这个降临的原因很少的原因是,核心PDF […] jpeg ai后jpeg ai模糊了真实和合成之间的界限,首先出现在unite.ai上。