Sagemaker关键词检索结果

在Amazon Sagemaker Canvas Workfrows中集成自定义依赖项

Integrating custom dependencies in Amazon SageMaker Canvas workflows

在亚马逊sagemaker画布中实施机器学习工作流程时,组织可能需要考虑其特定用例所需的外部依赖项。尽管Sagemaker画布为快速实验提供了强大的无代码和低编码功能,但某些项目可能需要默认情况下默认情况下的专门依赖项和库。这篇文章提供了一个示例,说明了如何将依赖外部依赖关系的代码合并到您的SageMaker画布工作流程中。

增强Amazon Sagemaker AI推理的推理组件滚动更新的增强部署护栏

Enhance deployment guardrails with inference component rolling updates for Amazon SageMaker AI inference

在这篇文章中,我们讨论了组织更新生产模型时面临的挑战。然后,我们深入研究推理组件的新滚动更新功能,并使用DeepSeek蒸馏器模型提供实践示例来演示此功能。最后,我们探索如何在不同方案中设置滚动更新。

创建生成的AI代理,该代理在使用Amazon Sagemaker Unified Studio

Create generative AI agents that interact with your companies’ systems in a few clicks using Amazon Bedrock in Amazon SageMaker Unified Studio

在这篇文章中,我们演示了如何在Sagemaker Unified Studio中使用Amazon Bedrock来构建生成AI应用程序,以与现有的端点和数据库集成。

在Amazon Sagemaker Hyperpod

Running NVIDIA NeMo 2.0 Framework on Amazon SageMaker HyperPod

在这篇博客文章中,我们探讨了如何将Nemo 2.0与Sagemaker Hyperpod集成,以实现对大型语言模型(LLMS)的有效培训。我们介绍设置过程,并提供逐步指南,以在Sagemaker HyperPod群集上运行NEMO作业。

Nemo Retriever Llama 3.2文本嵌入和重新固定NVIDIA NIM微服务现在在Amazon Sagemaker Jumpstart

NeMo Retriever Llama 3.2 text embedding and reranking NVIDIA NIM microservices now available in Amazon SageMaker JumpStart

今天,我们很高兴地宣布,Nemo Retriever Llama3.2文本嵌入和重新启动NVIDIA NIM微服务可在Amazon Sagemaker Jumpstart中获得。通过此发布,您现在可以部署NVIDIA优化的重新骑行和嵌入模型来构建,实验和负责任地扩展您的生成AI想法。在这篇文章中,我们演示了如何在Sagemaker Jumpstart上开始这些模型。

使用Amazon Sagemaker Hyperpod

Unleash AI innovation with Amazon SageMaker HyperPod

在这篇文章中,我们展示了SageMaker HyperPod及其在AWS RE:Invent 2024上引入的新功能如何满足现代AI工作负载的需求,从而提供了针对分布式培训和加速推理的持久和优化的群集,并在云规模上加速推理和有吸引力的价格。

在Amazon Sagemaker AI

Optimize hosting DeepSeek-R1 distilled models with Hugging Face TGI on Amazon SageMaker AI

在这篇文章中,我们演示了如何通过Amazon Sagemaker AI优化托管DeepSeek-R1蒸馏型模型(TGI)。

使用Amazon Sagemaker Hyperpod食谱自定义DeepSeek-R1蒸馏型 - 第1部分

Customize DeepSeek-R1 distilled models using Amazon SageMaker HyperPod recipes – Part 1

在这个两部分的系列中,我们讨论了如何通过使用deepSeek-R1模型及其蒸馏变量的预先构建的微调工作流(也称为“食谱”)来减少DeepSeek模型的自定义复杂性,并作为亚马逊SageMaker HyproPod食谱的一部分发布。 In this first post, we will build a solution architecture for fine-tuning DeepSeek-R1 distilled models and demonstrate the approach by providing a step-by-step example on customizing t

llm连续自我建筑微型调整框架由Amazon Sagemaker上的复合AI系统供电

LLM continuous self-instruct fine-tuning framework powered by a compound AI system on Amazon SageMaker

在这篇文章中,我们将连续的自我实施微型调整框架作为DSPY框架实现的复合AI系统。该框架首先从域知识库中生成一个综合数据集,并为自我建筑生成文档,然后通过SFT驱动模型进行微调,并介绍了人类的工作流程,以将人类和AI的反馈收集到模型响应中,它用于通过增强学习(RLHF/RLAIF)来对齐人类偏好来进一步提高模型性能。

Amazon Sagemaker Hyperpod任务治理的最佳实践

Best practices for Amazon SageMaker HyperPod task governance

在这篇文章中,我们提供了最佳实践,以最大程度地提高SageMaker HyperPod任务治理的价值,并使管理和数据科学体验无缝。在管理和运行生成的AI开发任务时,我们还讨论了共同的治理方案。

用AWS CDK

Create a private workforce on Amazon SageMaker Ground Truth with the AWS CDK

在这篇文章中,我们提供了一个完整的解决方案,用于使用AWS Cloud Development Kit(AWS CDK)在Amazon Sagemaker AI上编程创建私人劳动力,包括设置专用,完整配置的Amazon Cognito用户池。

使用高地形任务治理量最大化高地形群集利用率细粒度配额分配

Maximize HyperPod Cluster utilization with HyperPod task governance fine-grained quota allocation

我们很高兴地宣布高元素和内存配额分配的一般可用性,并宣布高架任务治理。借助此功能,客户可以优化Amazon弹性Kubernetes服务(Amazon EKS)上的Amazon Sagemaker HyperPod群集利用,分发公平用法,并支持不同团队或项目之间的有效资源分配。有关更多信息,请参见HyperPod Task Task Ponsectance […]

使用新的HyperPod CLI和SDK

Train and deploy models on Amazon SageMaker HyperPod using the new HyperPod CLI and SDK

在这篇文章中,我们演示了如何使用新的Amazon Sagemaker HyperPod CLI和SDK来简化通过使用完全碎片数据并行的分布式培训(FSDP)(FSDP)和模型部署进行推理的分布式培训训练和部署大型AI模型的过程。这些工具通过直接命令提供了简化的工作流程,以实现常见任务,同时通过SDK为更复杂的要求提供灵活的开发选项,以及全面的可观察性功能和准备生产的部署功能。

通过安全,ML驱动的预测分析授权空气质量研究

Empowering air quality research with secure, ML-driven predictive analytics

在这篇文章中,我们使用Amazon Sagemaker AI,AWS Lambda和AWS步骤功能提供了数据插补解决方案。该解决方案是为需要可靠的PM2.5数据进行趋势分析,报告和决策的可靠数据的环境分析师,公共卫生官员和商业智能专业人员设计的。我们从OpenAfrica采购了样本培训数据集。我们的解决方案使用预测时间序列预测PM2.5值。

了解亚马逊卫生服务如何使用AWS ML和ai ai

Learn how Amazon Health Services improved discovery in Amazon search using AWS ML and gen AI

在这篇文章中,我们向您展示了亚马逊卫生服务(AHS)如何使用亚马逊Sagemaker,Amazon Bedrock和Amazon EMR等AWS服务在Amazon.com搜索上解决可发现性挑战。通过将机器学习(ML),自然语言处理和矢量搜索功能相结合,我们提高了将客户与相关的医疗保健服务联系起来的能力。

使用Amazon SageMaker AI和模型上下文协议(MCP)

Enhance AI agents using predictive ML models with Amazon SageMaker AI and Model Context Protocol (MCP)

在这篇文章中,我们通过使用Amazon SageMaker AI和MCP整合预测ML模型来演示如何增强AI代理的功能。通过使用开源链代理SDK和SageMaker AI的灵活部署选项,开发人员可以创建复杂的AI应用程序,将对话性AI与强大的预测分析功能相结合。

使用可信赖的身份传播

Simplify access control and auditing for Amazon SageMaker Studio using trusted identity propagation

在这篇文章中,我们探讨了如何在Amazon Sagemaker Studio中启用和使用可信赖的身份传播,该工作室允许组织通过授予现有AWS IAM IAM身份中心身份的权限来简化访问管理。该解决方案演示了如何根据物理用户的身份实现细粒度的访问控件,在受支持的AWS服务中保持详细的审核日志,并支持长期运行的用户背景会话以进行培训工作。

使用Amazon SageMaker AI推理组件优化Salesforce的模型端点

Optimizing Salesforce’s model endpoints with Amazon SageMaker AI inference components

在这篇文章中,我们分享了Salesforce AI平台团队如何优化GPU利用率,提高了资源效率并使用Amazon SageMaker AI,特别是推理组件来节省成本。