Train, optimize, and deploy models on edge devices using Amazon SageMaker and Qualcomm AI Hub
在本文中,我们将介绍一种使用 Amazon SageMaker 和 Qualcomm AI Hub 在边缘进行端到端模型定制和部署的创新解决方案。
Deploying Your Llama Model via vLLM using SageMaker Endpoint
利用 AWS 的 MLOps 平台为您的 LLM 模型提供服务继续阅读 Towards Data Science »
Introducing Amazon EKS support in Amazon SageMaker HyperPod
这篇文章专为 Kubernetes 集群管理员和 ML 科学家设计,概述了 SageMaker HyperPod 引入的关键功能,以促进在 EKS 集群上进行大规模模型训练。
在这篇文章中,我们详细介绍了我们在创建两个概念验证 (PoC) 练习方面的合作,这些练习围绕多模态机器学习进行生存分析和癌症亚型分析,使用基因组(基因表达、突变和拷贝数变异数据)和成像(组织病理学幻灯片)数据。我们提供了关于使用 Amazon SageMaker 在 AWS 上构建复杂 ML 工作流的可解释性、稳健性和最佳实践的见解。这些多模态管道正在 Genomics England 癌症队列中使用,以增强我们对癌症生物标志物和生物学的理解。
在本文中,我们将向您展示如何通过使用直接偏好优化 (DPO) 对使用 SageMaker Ground Truth 收集的数据进行微调来提高 Meta Llama 3 8B Instruct 的性能。
Fine-tune Llama 3 for text generation on Amazon SageMaker JumpStart
在本文中,我们将演示如何使用 Amazon SageMaker JumpStart 对 Meta 中最近发布的 Llama 3 模型(特别是 llama-3-8b 和 llama-3-70b 变体)进行微调。
Deploy Amazon SageMaker pipelines using AWS Controllers for Kubernetes
在本文中,我们展示了熟悉 Jupyter 笔记本和 SageMaker 环境的 ML 工程师如何与熟悉 Kubernetes 和相关工具的 DevOps 工程师高效合作,设计和维护具有适合其组织的基础架构的 ML 管道。这使 DevOps 工程师能够使用他们习惯的同一套工具和环境来管理 ML 生命周期的所有步骤。
在这篇文章中,我们探讨了 Model Registry 的新功能,这些功能简化了基础模型 (FM) 管理:您现在可以注册解压的模型工件并传递最终用户许可协议 (EULA) 接受标志,而无需用户干预。
在本文中,我们将探讨如何使用新的 EMR Serverless 集成、Spark 的分布式处理以及由 LangChain 编排框架提供支持的 Amazon OpenSearch Service 向量数据库构建可扩展且高效的检索增强生成 (RAG) 系统。此解决方案使您能够处理大量文本数据,生成相关嵌入,并将它们存储在强大的向量数据库中,以实现无缝检索和生成。
Accelerate Generative AI Inference with NVIDIA NIM Microservices on Amazon SageMaker
在本文中,我们将演示客户如何通过 NVIDIA NIM 与 SageMaker 的集成来使用生成人工智能 (AI) 模型和 LLM。我们演示了这种集成的工作原理,以及如何在 SageMaker 上部署这些最先进的模型,以优化其性能和成本。
Llama 3.1 models are now available in Amazon SageMaker JumpStart
今天,我们很高兴地宣布,最先进的 Llama 3.1 多语言大型语言模型 (LLM) 集合(包括 8B、70B 和 405B 大小的预训练和指令调整生成式 AI 模型)可通过 Amazon SageMaker JumpStart 部署以进行推理。Llama 是一种可公开访问的 LLM,专为开发人员、研究人员和企业设计,用于构建、试验和负责任地扩展他们的生成式人工智能 (AI) 创意。在这篇文章中,我们将介绍如何使用 SageMaker JumpStart 发现和部署 Llama 3.1 模型。
Amazon SageMaker unveils the Cohere Command R fine-tuning model
AWS 宣布在 Amazon SageMaker 上推出 Cohere Command R 微调模型。SageMaker 机器学习 (ML) 功能套件的最新成员使企业能够利用大型语言模型 (LLM) 的强大功能,并充分发挥其在各种应用中的潜力。Cohere Command R 是一种可扩展的前沿 […]
Improve RAG accuracy with fine-tuned embedding models on Amazon SageMaker
这篇文章演示了如何使用 Amazon SageMaker 微调 Sentence Transformer 嵌入模型并将其部署到 Amazon SageMaker Endpoint。本文中的代码和更多示例可在 GitHub 存储库中找到。
这篇文章是与 BRIA AI 的 Bar Fingerman 共同撰写的。这篇文章解释了 BRIA AI 如何快速且经济地在包含 PB 级许可图像的数据集上训练高分辨率 (1024×1024) 文本到图像传播模型 BRIA AI 2.0。Amazon SageMaker 训练作业和 Amazon SageMaker 分布式训练库承担了与基础设施相关的无差别繁重工作 [...]
这篇文章向您展示了如何使用其他依赖项扩展 Amazon SageMaker Distribution,以创建针对地理空间分析量身定制的自定义容器映像。虽然这篇文章中的示例侧重于地理空间数据科学,但所介绍的方法可以应用于基于 SageMaker Distribution 的任何类型的自定义映像。
随着生成式人工智能 (AI) 推理对企业越来越重要,客户正在寻求扩展其生成式 AI 操作或将生成式 AI 模型集成到现有工作流程中的方法。模型优化已成为一个关键步骤,使组织能够平衡成本效益和响应能力,从而提高生产力。但是,性价比要求在不同用例之间差异很大。对于 [...]
今天,Amazon SageMaker 宣布了一款新的推理优化工具包,可帮助您将优化生成式人工智能 (AI) 模型所需的时间从数月缩短到数小时,从而为您的用例实现一流的性能。借助这项新功能,您可以从优化技术菜单中进行选择,将它们应用于您的生成式 AI [...]
The Weather Company enhances MLOps with Amazon SageMaker, AWS CloudFormation, and Amazon CloudWatch
在本文中,我们分享了 The Weather Company (TWCo) 如何使用 Amazon SageMaker、AWS CloudFormation 和 Amazon CloudWatch 等服务增强其 MLOps 平台的故事。TWCo 数据科学家和 ML 工程师利用自动化、详细的实验跟踪、集成训练和部署管道来帮助有效扩展 MLOps。TWCo 将基础设施管理时间缩短了 90%,同时还将模型部署时间缩短了 20%。