因变量关键词检索结果

如何规范化你的回归

How to regularize your regression

制药应用中的一系列回归实例。我们能否从类似的特定领域数据中学习如何设置正则化参数 \(\lambda\)?概述。实际因变量 \(y\)和特征向量 \(X\)之间最简单的关系可能是线性模型 \(y = \beta X\)。给定一些由特征和因变量对 \((X_1,y_1),(X_2,y_2),\dots,(X_m,y_m)\)组成的训练示例或数据点,我们希望学习 \(\beta\),在给定未见过的示例的特征 \(X’\)的情况下,哪个会给出最佳预测 \(y’\)。将线性模型 \(\beta\)拟合到数据点的过程称为线性回归。这种简单而有效的模型在生物、行为和社会科学、环境研究和金融预测等领域有着广

野外线性回归

Linear regression in the wild

当因变量有测量误差时使用线性回归。

多项逻辑回归

Multinomial Logistic Regression

为什么重要:多项逻辑回归是一种统计技术,用于预测具有多个类别的分类因变量的结果。

什么是单变量线性回归?它在人工智能中是如何使用的?

What is Univariate Linear Regression? How is it Used in AI?

为什么重要:具体而言,单变量线性回归侧重于使用单个独立变量预测因变量。

置换检验回归示例

A Permutation Test Regression Example

在上周的一篇文章中,我谈到了排列(随机化)检验,以及它们与我们在计量经济学中通常使用的(经典参数)检验程序有何不同。我假设您已经阅读了该文章。(可能在某个时候会有一次小测验!)我承诺会提供一个基于回归的示例。毕竟,我在上一篇文章中介绍的两个示例旨在揭示排列/随机化检验的基本原理。它们确实没有太多“计量经济学内容”。在下文中,我将交替使用术语“排列检验”和“随机化检验”。我们在这里要做的是查看一个简单的回归模型,看看我们如何使用随机化检验来查看回归变量 x 和因变量 y 之间是否存在线性关系。请注意,我说的是“简单回归”模型。这意味着只有一个回归量(除了截距)。多元回归模型为置换检验提出了各种各