获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
Robust 'Huber mean' for geometric data protects against noise and outliers
在一个由复杂数据驱动的时代,科学家们越来越多地遇到并不完全位于平坦的欧几里得表面上的信息。从 3D 医学扫描到机器人方向和人工智能转换,当今的大部分数据都存在于称为黎曼流形的弯曲几何空间中。准确分析此类数据仍然是一个挑战,特别是当噪声或异常值扭曲结果时。