3D Medical image segmentation with transformers tutorial
实现 UNETR 在 BRATS 数据集上执行 3D 医学图像分割
Transformers in computer vision: ViT architectures, tips, tricks and improvements
了解有关计算机视觉中的 Transformer 架构(又名 ViT)的所有知识。
An Overlooked Vulnerability That Could Cripple America's Power Grid
一个被忽视的脆弱性,可能会削弱库尔特·科布(Kurt Cobb)通过美国库尔特·科布(Kurt Cobb)的力量。 transformer wait times have ballooned from 50 to 127 weeks, crippling grid resilience in the face of wildfires, storms, or attacks.The Build America, Buy America Act and global demand for transformers have limited supply, with domestic produc
IEEE Transactions on Fuzzy Systems, Volume 33, Issue 7, July 2025
1) Optimizing Deep Neuro-Fuzzy Network for ECG Medical Big Data Through Integration of Multiscale FeaturesAuthor(s): Xin Wang, Jianhui Lv, Byung-Gyu Kim, Bidare Divakarachari Parameshachari, Keqin Li, Dongsheng Yang, Achyut ShankarPages: 2027 - 20372) FDformer: A Fuzzy Dynamic Transformer-Based高效工业时
Understanding Input Selectivity in Mamba
State-Space Models (SSMs), and particularly Mamba, have recently emerged as a promising alternative to Transformers.Mamba introduces input selectivity to its SSM layer (S6) andincorporates convolution and gating into its block definition.While these modifications do improve Mamba's performance over
Cubify Anything: Scaling Indoor 3D Object Detection
我们考虑了从商品手持设备中获取的单个RGB(-d)帧的室内3D对象检测。我们试图在数据和建模方面显着提高现状。首先,我们确定现有数据集对对象的规模,准确性和多样性有重大限制。结果,我们介绍了Cubify-任何1M(CA-1M)数据集,该数据集在超过1K的高度精确的激光扫描场景上详尽地标记了超过400K的3D对象,并将其接近完美的注册标记为超过3.5k手持式手持式捕获。接下来,我们建立Cubify Transformer…
Transformer Lab: Öppen källkods-plattform förenklar arbetet med AI-språkmodeller
人工智能和大型语言模型变得越来越易于访问,但实际上与它们合作通常需要专业知识。 Transformer Lab试图通过提供一个平台来改变这一点,开发人员可以在本地尝试AI模型而无需深入的技术知识。 Transformer Lab是一个开源代码平台,允许任何人构建,微调[…] Post Transformer Lab:开源平台最初出现在AI News上的AI语言模型来简化作品。
IEEE Transactions on Emerging Topics in Computational Intelligence Volume 9, Issue 2, April 2025
1) IDET: Iterative Difference-Enhanced Transformers for High-Quality Change DetectionAuthor(s): Qing Guo, Ruofei Wang, Rui Huang, Renjie Wan, Shuifa Sun, Yuxiang ZhangPages: 1093 - 11062) CVIformer: Cross-View Interactive Transformer for Efficient Stereoscopic Image Super-ResolutionAuthor(s): Dongya
Complex and Intelligent Systems, Volume 11, Issue 2, February 2025
1)一种基于改进的地下电动运输车辆蚂蚁菌落算法的低碳调度方法:S):Yizhe Zhang,Yinan Guo,Shirong GE2)对Federated Learningauthor的安全威胁调查lag 3)隧道环境中的车辆定位系统:审查员:S):Suying Jiang,Qiufeng Xu,Jiachun li4)屏障并增强使用连续的线性二磷剂Neural Netrol Netrowsauthor的绿色供应链管理策略Abosuliman, Saleem Abdullah, Nawab Ali5) XTNSR: Xception-based transformer network for
Theory, Analysis, and Best Practices for Sigmoid Self-Attention
*主要贡献者注意力机制是 Transformer 架构的关键部分。它是一种序列到序列的映射,可将每个序列元素转换为值的加权和。权重通常作为键和查询之间的点积的 softmax 获得。最近的研究探索了 Transformer 中 softmax 注意力机制的替代方案,例如 ReLU 和 S 型激活。在这项研究中,我们重新审视 S 型注意力机制并进行了深入的理论和实证分析。从理论上讲,我们证明具有 S 形注意力机制的变换器是通用函数逼近器,并且……
Transformers and Beyond: Rethinking AI Architectures for Specialized Tasks
2017 年,一场重大变革重塑了人工智能 (AI)。一篇题为《注意力就是你所需要的一切》的论文介绍了 transformers。这些模型最初是为了增强语言翻译而开发的,现在已经发展成为一个强大的框架,在序列建模方面表现出色,在各种应用中实现了前所未有的效率和多功能性。如今,transformers 不仅仅是自然 […] 文章《Transformers 及其他:重新思考用于专门任务的 AI 架构》首先出现在 Unite.AI 上。
Building Multilingual Applications with Hugging Face Transformers: A Beginner’s Guide
查看使用 Hugging Face 构建多语言应用程序的实用指南。
AGI in 2025 |Do you think what matters today will still matter in the coming months? TL;DR: No!
OpenAI、Sam Altman、Elon Musk、xAI、Anthropic、Gemini、谷歌、苹果……所有这些公司都在竞相在 2025 年前打造 AGI,一旦实现,将在数周内被数十家公司复制。创建压缩的人类知识库、提取信息并迭代输出以优化结果的想法已不再是革命性的。全球数千名工程师可以复制 OpenAI 所取得的成就,因为它主要涉及扩大 Transformers——谷歌开发的一种模型,而它本身只是先前 AI 研究的一个进步。但接下来会发生什么?劳动力下一个重大转变:地球上的每家公司都将尽可能开始用 AGI 取代工作负载,以最大化利润率。公司不会雇佣那么多人,因为有了 AI 代理,现有
From text to 3D: the magic behind Edify 3D by NVIDIA
NVIDIA 的 Edify 3D 使用 AI 在 2 分钟内创建高质量的 3D 模型。通过结合多视图扩散模型和 Transformers,它可以从文本或图像快速、准确且可扩展地生成 3D,使其成为游戏、动画和设计行业的完美解决方案。
Multimodal RAG Implementation with Hugging Face
了解如何通过使用 Hugging Face Transformers 结合文本和视觉输入来增强 RAG 模型。
让我们学习如何将 LayoutLM 与 Hugging Face Transformers 结合使用
How to Build a Text Classification Model with Hugging Face Transformers
了解从头开始训练基于转换器的文本分类模型的关键步骤。