溶液核磁共振(NMR)光谱是一种强大的技术,用于分析原子分辨率下大分子的三维结构和动力学。最近的进步利用了NMR在交换系统中的独特特性,以检测,表征和可视化激发的生物大分子及其复合物的稀疏人口稠密的状态,这些状态仅是短暂的。这些状态对常规生物物理技术看不见,并且在许多过程中起着关键作用,包括分子识别,蛋白质折叠,酶催化,组装和原纤维形成。所有的NMR技术都利用稀疏人群的NMR不可或缺的NMR可视和高度填充的NMR可见状态之间的交换,以将磁化特性从无形状态传递到可见的状态,在该状态下可以轻松检测和量化。有三类的NMR实验依赖于NMR可见和可视化物种之间距离,化学移位或横向松弛(分子质量)的差异。在这里,我说明了这些方法在亨廷顿基因的Exon-1编码的N末端区域的核核前核酸前寡核酸的复杂机制,在此中,CAG扩展了CAG的扩展,导致亨廷顿氏病,导致亨廷顿疾病,是一种致命的自身植物神经变性。我还讨论了四聚体的抑制如何阻止纤维形成的较慢(许多数量级)过程。
摘要 针对 COVID-19 和其他冠状病毒引起疾病的药物研究集中在最保守和最重要的蛋白质上,主要是主要蛋白酶 (M pro ) 和木瓜蛋白酶样 (PL pro ) 以及 RNA 依赖性 RNA 聚合酶 (RdRp)。M pro 的抑制剂 Nirmatrelvir 最近作为双药组合 Paxlovid 的一部分获得 FDA 批准,还有许多其他药物处于不同的开发阶段。多种 PL pro 抑制剂候选药物正在研究中,但尚未进入临床试验阶段。几种重新利用的 RdRp 抑制剂已投入使用。我们可以预期,一旦抗 COVID-19 药物得到广泛使用,就会出现 SARS-CoV-2 的耐药变体,我们已经看到针对 SARS-CoV-2 RdRp 的药物出现了这种情况。我们假设可以通过识别现有病毒种群中已经存在的可能的逃逸突变来预测此类变体的出现。我们小组之前开发了 coronavirus3D 服务器 (https://coronavirus3d.org),用于跟踪 SARS-CoV-2 在其蛋白质三维结构背景下的演变。在这里,我们引入了专门的页面来跟踪 M pro 和 PL pro 的潜在耐药突变的出现,表明此类突变已经在 SARS-CoV-2 病毒群中传播。通过定期更新,耐药性跟踪器提供了一种简单的方法来监测和潜在预测 SARS-CoV-2 病毒中耐药性突变的出现。
摘要:机器学习 (ML) 识别共价配位位点可能会加速靶向共价抑制剂的设计,并有助于扩大可用药的蛋白质组空间。本文我们报告了基于树的模型和卷积神经网络 (CNN) 的严格开发和验证,这些模型和神经网络是在新近整理的数据库 (LigCys3D) 上训练的,该数据库包含近 800 种蛋白质中的 1,000 多个配位半胱氨酸,由蛋白质数据库中的 10,000 多个三维结构代表。树模型和 CNN 的未见测试分别产生了 94% 和 93% 的 AUC(受试者工作特征曲线下面积)。基于 AlphaFold2 预测的结构,ML 模型以超过 90% 的召回率重现了 PDB 中新配位的半胱氨酸。为了协助共价药物发现社区,我们报告了 392 种人类激酶中预测的可配体半胱氨酸及其在序列比对激酶结构(包括 PH 和 SH2 结构域)中的位置。此外,我们还发布了可搜索的在线数据库 LigCys3D(https://ligcys.computchem.org/)和网络预测服务器 DeepCys(https://deepcys.computchem.org/),这两个数据库都将通过包含新发布的实验数据不断更新和改进。本研究代表了迈向由机器学习主导的大型基因组数据和结构模型集成的第一步,旨在为下一代共价药物发现注释人类蛋白质组空间。
Haloferax Mediterranei是一种在高盐环境中蓬勃发展的极端卤素古老的考古,由于其在极端盐度条件下繁荣发展,因此在生物技术和生化研究中引起了人们的关注。转录因子在调节各种细胞过程中必不可少,已成为理解其适应性的焦点。这项研究深入研究了LRP转录因子的作用,探索了其通过β-半乳糖苷酶测定的体内GLNA,NASABC和LRP基因启动子的调节。值得注意的是,我们的发现提出LRP是氮代谢的开创性转录调节剂。这项研究表明其在激活或抑制同化途径酶(GLNA和NASA)中的潜在作用。LRP与这些启动子之间的相互作用使用电泳迁移率转移测定法和差异扫描荧光法分析,这突出了L-谷氨酰胺在稳定LRP -DNA复合物中必不可少的作用。我们的研究发现,在存在L-谷氨酰胺的情况下,卤素LRP形成八接结构。该研究揭示了使用X射线晶体学作为同型二聚体的三维结构,通过小角度X射线散射在溶液中证实了该状态。这些发现阐明了驱动HFX的复杂分子机制。地中海尼的氮代谢,提供有关其基因表达调节的宝贵见解,并丰富我们对极端生物学的理解。
提高锂离子电池性能的关键是精确阐明电池的时间和空间层次结构。锂离子电池由阴极和阳极和含有电解质的分离器组成。锂离子电池的阴极和阳极由由活性材料,导电材料和粘合剂组成的复合材料制成,形成复杂的三维结构。由于锂离子反复插入并从活性材料中取出时,反应进行。因此,由于离子扩散而对活性材料的晶格进行了重组,从而导致相变。在活性材料 - 电解质界面上,锂离子的插入和去插入以及电荷转移反应进行。由于多种现象的相互作用,锂离子电池的电荷 - 放电反应是一个非平衡状态。在常规电池研究中执行的灾难性电池后的分析并不能准确理解反应速率和降解机制的主要因素。本综述介绍了有关锂离子电池的时间和空间层次结构的研究结果,重点是在电荷 - 解散反应期间进行的操作测量。第1章概述了锂离子电池的分层反应机理。第2章介绍了Operando测量技术,这对于分析很有用。第3章描述了电极 - 电解质界面的反应,即反应场,第4章讨论了由有源材料中的两相反应引起的非平衡结构变化。第5章介绍了复合电极的独特反应异质性的研究,该反应异质性可以实用。了解分层反应机制将为锂离子电池和下一代电池的设计提供有用的信息。
摘要:背景:高危神经母细胞瘤患者的结果仍然很差,并且迫切需要新的治疗策略。RIST方案代表了一种新型的计量和多模式治疗策略,用于将分子靶向药物作为“预处理”与常规化学疗法主链结合的高危神经细胞瘤,目前在II期临床试验中进行了评估。用于临床前药物测试,与mo-nolayer培养物相比,癌细胞的生长是球体的优势,因为它重现了广泛的肿瘤特征,包括三维结构和癌症干细胞(CSC)特性。这项研究的目的是建立一个神经母细胞瘤模型,以严格评估RIST治疗方案。方法:通过mRNA和蛋白质分析和球体生存能力通过基于发光的测定进行评估CSC标记表达。通过组织微阵列分析和患者数据挖掘评估RNA结合蛋白LA在神经母细胞瘤中的异常表达。结果:与单层培养物相比,球体培养物显示出较高的CSC样标记(CXCR4,Nanog和BMI)亚组的表达和更高的THR389磷酸化表达。球体靶向分子的“预处理”降低了肿瘤信号传导和CSC标记表达。结论:RIST治疗方案有效地降低了以晚期CSC特性为特征的神经母细胞瘤球体的活力。
第一次。该项目于1996年在耶鲁大学结束,宣布了四膜虫组I核酶的催化核心的三维结构。这是一项重大成就,因为在此之前,只检查了单个RNA结构:Transfer RNA(tRNA),它比核酶小得多,更简单[1],[2]。到1998年,杜德纳(Doudna)和她的团队确定了其第一个病毒RNA的晶体结构 - 肝炎三角病病毒(HDV)[2]。乙型肝炎是一种人类疾病,在急性和慢性感染中,可以导致肝癌和肝癌的机会增加。是由小病毒样颗粒HDV引起的,该病毒仅感染患有乙型肝炎感染的患者。HDV的圆形RNA基因组为1.7 kb,在宿主细胞内复制成基因组和抗原学(与原始基因组互补)RNA。复制是通过滚动圆机制进行的,该机制产生了包含基因组多个副本的线性RNA链。HDV核酶的催化活性对于宿主细胞内的病毒复制和病毒颗粒组件至关重要。这是因为它通过一般酸基化学反应来催化病毒RNA自裂性,其中活性位点的胞苷和至少一个金属离子涉及[3],[4]。解决大型RNA结构的最初工作导致内部核糖体进入位点(IRES)和蛋白RNA复合物(例如信号识别粒子)进行进一步的结构研究[1]。
头足类动物的眼睛是收敛进化的一个众所周知的例子,类似于脊椎动物的眼睛。尽管头足动物和脊椎动物表现出相似的眼睛形式和功能,但它们在视觉起源和结构上有所不同。由于其高度集中的神经系统,较短的生命周期和特定的摄像头型眼睛,可导致脊椎动物的收敛,这是其进化和发育研究中的良好模型系统。含镜头的眼睛代表了简单眼睛的显着改善,并通过收敛机制,各种镜片和含有多样的结晶的角膜演变而来。晶状体晶状体的多样性和分类型特异性表明了结晶蛋白作用的收敛进化。先前的研究集中在晶体蛋白的形态,个体发育和系统发育分析上,以了解含有透镜的眼睛的演变。然而,关于O. o. o. o. o. o. g。使用章鱼小调的胚胎分期系统作为模型系统,我们通过免疫组织化学,腓罗染色和三维结构研究了十五个基因组和眼睛的结构。我们还获得了与结晶蛋白相关的基因(i。e。,a - ,s-和w -crystallin)来自O. minor的转录组数据。基于这些基因的随后的分子系统发育分析揭示了三个基因类别之间的不同差异模式,并进一步提出了支持分类群特异性融合进化趋势的证据。我们通过发育阶段的原位杂交分析了结晶蛋白基因的表达模式。所有结晶蛋白基因通常在睫状体的小扁豆细胞中表达。在头足动物中发现的A-晶状体蛋白也在镜头的外围区域表达,包括
(注2)核小体这是染色质的基本单位,是一种结构,其中大约150个DNA碱基对包裹在一个组蛋白八聚体周围,该组蛋白八聚体包含两个分子(H2A,H2B,H2B,H3,H4)中的四种分子。 (注3)冷冻电子显微镜A显微镜,其中包含蛋白质样品在极端低温的环境中冷冻,并用电子束观察到限制样品。通过拍摄大量图像,可以获得具有多种角度信息的粒子图像,并且可以从该信息中重建样品的三维结构。 (注4)氨基末端结构域(N末端结构域)在蛋白质末端的一个区域,该区域具有氨基群,最初是在蛋白质合成过程中合成的。 RAD51由两个球状结构域组成,其中一个球状结构域存在于氨基末端,一个与RECA同源的球状结构域。 (注5)L1回路区域该区域在与RECA同源的球状结构域中发现,对于与线性DNA结合很重要。联系(请联系演讲者以获取研究详细信息)Kurumizaka hitoshi教授,定量生命科学研究所,东京大学电话:03-5841-7826传真:03-5841-1468电子邮件:kurumizaka:kurumizaka [at] iqb.u-tokyo.ac.ac.jp procention nocation nocation jst Impaction jst Impact项目> Fumie Imabayashi电话:03-3512-3528传真:03-3222-2068电子邮件:Eratowww [at] jst.go..jp <与报告相关的询问>通用事务团队,定量生命科学研究所,东京大学电话:03-5841-781-781-781313 soumu [at] iqb.u-tokyo.ac.ac.jp日本科学技术局公共关系部电话:03-5214-8404传真:03-5214-8432电子邮件:
以铅(Pb 2 +)[1,2]为二价阳离子的金属卤化物钙钛矿纳米晶体(NC)由于其尺寸和形貌可调、光学性能增强和化学稳定性,在光伏、[3]光发射和检测、[4,5]激光[5]和水分解[6]等应用方面具有吸引力。然而,据报道,当用毒性较低的[7,8]二价金属(如Sn 2 +)[9,10–12,13]取代铅时,所得NC的化学稳定性较差,缺乏可调性,光学性能也不太理想。相比之下,自50多年前首次被探索以来,Sn卤化物钙钛矿块体[14,15,16]和薄膜[17]已经得到了强有力的发展。 [18] 它们在光伏电池中的性能提高是由于使用添加剂(如SnF2 [19]和离子液体[20])或通过从三维结构转换为二维混合钙钛矿(Dion-Jacobson [8,21]和Ruddlesden-Popper(RP)[22,23])成功稳定了活性层。由于两个主要挑战,块体材料中获得的稳定性增强不能简单地转化为纳米尺度:i)对于 L 1 = 10 nm 以下的 NC,表面体积比很高(其中 L 1 是长方体的最小横向尺寸),这会导致大量金属离子从 Sn 2 + 氧化为 Sn 4 + ,以及 ii)存在光学带隙相差多达 1.25 eV 的多晶型物 [15,16](即具有强光致发光 (PL) 的高导电黑色立方相 (Pm3m)、γ-正交相 (Pnma) 和非导电黄色正交相 (Pnma))。[15,16,24]