摘要。辣椒半导体由于其高功率转化效率而被广泛用作薄膜太阳能电池,尤其是柔性太阳能电池的吸收剂。它们也具有有趣的机械性能,使它们具有有希望的材料,可弹性,光线和薄的太阳能电池。在这项工作中,我们报告了Cuins 2,Cuinse 2和Cuin(S,SE)2吸收器太阳能材料的晶格常数和大量模量的第一原则计算。使用PBE-GGGA近似值和Ultrasoft伪电位在密度功能理论框架中使用量子意式浓缩软件软件包中实现的平面波进行所有计算。计算出的晶格常数与可用的实验研究很好地相关。使用Birch-Murnaghan的状态方程的三阶来描述能量体积和压力量关系,以计算吸收器太阳能材料的大量模量,这与特定条件下材料的硬度相关。除了Cuin(S,SE)2外,对Cuins 2和Cuinse 2获得的批量模量值与可用的理论结果非常吻合,这些结果已首次计算并报告。
氮化硅(Si 3 N 4)是非线性光学的不断成熟的集成平台,但主要考虑三阶[χ(3)]非线性相互作用。最近,二阶[χ(2)]非线性通过光钙效应引入Si 3 N 4中,从而导致准时铭文 - 匹配χ(2)光栅。然而,光藻素效应在微孔子中的全部潜力在很大程度上尚未探索级联效应。在这里,我们报告了正常分散体Si 3 N 4微孔子中的χ(2)和χ(3)非线性效应。我们认为,光诱导的χ(2)光栅还为总频率生成过程提供了相匹配,从而实现了主梳的启动和连续切换。此外,双重谐振泵和第二谐波场允许有效的第三谐波生成,其中鉴定出二次光学写入χ(2)光栅。最后,我们到达从总和 - 耦合初级梳子中演变的宽带微重尸状态。这些结果扩大了微孔子中级联效应的范围。
4我们使用Mendoza和Villalvazo(2020)开发的FIPIT算法。该算法修改了欧拉元素方程式的标准迭代方法,以避免求解同时求解非线性方程(如标准时间迭代方法)和不规则的插值(如内源性网格方法)。进行比较,附录B.1.2使用值函数迭代解决了模型。5在De Groot等人的附录B.3.7中。(2019年),我们提出了三阶应用程序(3OA)结果,并发现除非引入随机波动率,否则3OA是不必要的(请参阅De Groot,2016年)。对于QLOBC,我们使用DynareObc算法。div> dynareObc和oxcbin时,当均衡是唯一的时候,可以提供相同的解决方案。dynareObc的优点是它在有限的时间内收敛,并且可以测试平衡多重性。6在De Groot等人中。 (2019年),我们研究了针对的校准设置以匹配NFA的第一阶自相关。 我们发现的定性特征没有变化。6在De Groot等人中。(2019年),我们研究了针对的校准设置以匹配NFA的第一阶自相关。我们发现的定性特征没有变化。
手性材料表现出自旋滤波效果,所谓的手性诱导的自旋选择性(CISS)。最近观察到手性超导体末端的自旋积累的观察到了研究超导体中CISS效应的新途径。在手性超导体中,旋转单链和自旋三阶阶参数的混合物显着影响超导性的特性。在本文中,我们研究了超导顺序参数与超电流诱导的自旋电流之间的相互作用,即超传递电流。在弱聚会混合的超导体中,自旋电流主要与温度无关,是由自旋极化的库珀对带有有限的质量中心动量的。相反,在强派对混合的超导体中,温度依赖性自旋电流还由具有相反动量的电子和反平行旋转形成库珀对。手性结构化超导体将为探索CISS效应提供新的平台,并可以更深入地了解其与平均混合订单的基本机制。
合成了六种具有不同钠含量的富铌玻璃。在互补红外和拉曼分析的基础上,研究了钠含量及其对极化前后玻璃结构的影响。极化玻璃横截面上的相关二次谐波 (SHG)/拉曼显微镜显示 SHG 信号和结构变化共定位。无论是通过极化 (230 – 300 °C) 去除钠,还是通过起始玻璃成分(熔化温度为 1300 – 1500 °C)定义的碱含量去除钠,都证明了类似的结构重排。还讨论了钠含量对热极化前后光学性质的影响。发现极化引起的折射率变化(范围在 10 − 3 和 3 × 10 − 2 之间)主要是由于极化区域密度下降而不是成分和结构变化造成的。通过 Maker Fringe SHG 分析,证实了极化引起的二阶非线性响应的电光起源,并根据影响三阶磁化率 [ χ (3) ] 或极化层内部电场强度的参数选择,讨论了 χ (2) (2 – 2.5 pm/V) 随钠含量的变化。
摘要 本文介绍并分析了一种专用于 2.4 GHz 无线传感器网络 (WSN) 应用的多模式低噪声放大器 (LNA) 的设计。所提出的无电感器 LNA 采用 28 nm FDSOI CMOS 技术实现,基于共栅极配置,其中嵌入共源级以提高电路的整体跨导。该 LNA 经过专门设计和优化,可解决三种操作模式。重新配置是通过电流调谐以及切换放大晶体管的背栅极来完成的。所提出的实现方式可使品质因数 (FOM) 在不同操作模式下保持恒定。在低功耗模式下,LNA 仅消耗 350 uW。它实现了 16.8 dB 的电压增益 (G v ) 和 6.6 dB 的噪声系数 (NF)。在中等性能模式下,增益和噪声系数分别提高到 19.4 dB 和 5.4 dB,功耗为 0.9 mW。在高性能模式下,增益最大,为 22.9 dB,噪声系数最小,为 3.6 dB,功耗为 2 mW。输入参考三阶截点 (IIP3) 所表示的线性度恒定,接近 -16 dBm。报道的 LNA 仅占用 0.0015 mm 2 。
图1。(a)双泵BS FWM工作原理。当两个泵(𝑃1和𝑃2)和播种信号(𝑆)输入三阶非线性波导中时,在满足相位匹配条件的假设下,BS FWM可能会发生。在这种情况下,光子从信号𝑆散射到两个怠速(𝐼,𝑏和𝐼,𝑟),并在两个泵之间同时进行能量交换。实心箭头表示光子能量的损失(下)和增益(向上),而虚线箭头表示𝐼,𝑟(红色)和𝐼(blue)cases的能量交换的方向。(b)BS-IM-FWM方案的相位匹配机理的图形说明。如果将𝑃1和𝑃2放置在𝑇𝐸00模式下,并且在多模式波导的10模式下的信号和空闲器,则可以在平均频率的两个pumencies和light of the Myder的igv曲线上绘制两个级别的IGV曲线的水平线(以及两个泵的ig p pulps of puls或the p pys)的水平曲线,并保留相匹配条件,并保留。 𝐵𝑆,𝑟)。
摘要:纳米级机械谐振器引起了信号处理,传感器和量子应用的广泛关注。纳米结构中超高Q声腔的最新进展允许与各种物理系统和高级功能设备进行牢固的相互作用。那些声学腔对外部扰动高度敏感,由于这些响应是由几何和材料确定的,因此很难控制这些共振特性。在本文中,我们通过在光力学系统中混合高阶Lorentzian响应来演示一种新型的声学共振调节方法。使用弱耦合的语音晶体声腔,我们实现了二阶和三阶洛伦兹响应的连贯混合,这能够具有与设备的声学耗散率相当的共振范围的带宽和峰值频率的微调和峰值频率。这种新颖的共振调节方法可以广泛应用于洛伦兹响应系统和光学机械,尤其是针对环境波动和制造误差的主动补偿。关键字:光子综合电路,硅光子学,声学效应,片上布里群散射,光学机械
电化学模型可以洞悉电池的内部状态,成为电池设计和管理的有力工具。这些模型由数值求解的偏微分方程 (PDE) 组成。在本文中,我们比较了两种常用于数值求解锂离子电池控制 PDE 的空间离散化方法,即有限差分法 (FDM) 和有限体积法 (FVM),它们的模型精度和质量守恒保证。首先,我们提供对 FDM 和 FVM 进行空间离散化的数学细节,以求解电池单粒子模型 (SPM)。从实验数据中识别 SPM 参数,并进行灵敏度分析以研究不同电流输入配置文件下的参数识别能力,然后对两种数值方案进行模型精度和质量守恒分析。利用三阶 Hermite 外推方法,本文提出了一种增强型 FVM 方案,以提高依赖线性外推的标准 FVM 的模型精度。本文表明,采用 Hermite 外推的 FVM 方案可建立精确且稳健的控制型电池模型,同时保证质量守恒和高精度。© 2023 电化学学会(“ECS”)。由 IOP Publishing Limited 代表 ECS 出版。[DOI:10.1149/1945-7111/ ad1293]
最近开发了Terahertz(THZ)二维相干光谱(2DC)是一种强大的技术,可以以与其他光谱镜的方式获取材料信息。在这里,我们利用THZ 2DC研究了常规超导体NBN的THZ非线性响应。使用宽带THZ脉冲作为光源,我们观察到了一个三阶非线性信号,其光谱成分的峰值达到了超导间隙能量2δ的两倍。具有窄带Thz脉冲,在驱动频率ω处鉴定出THZ非线性信号,并在ω¼2δ时在温度下表现出谐振剂的增强。一般的理论考虑表明,这种共振只能由光激活的顺磁耦合引起。这证明了非线性THZ响应可以访问与磁磁性拉曼样密度波动不同的过程,据信这在金属的光学频率下占主导地位。我们的数值模拟表明,即使对于少量疾病,ω¼2δ共振也是由整个研究疾病范围内的超导振幅模式主导的。这与其他共振相反,其振幅模式的贡献取决于疾病。我们的发现证明了THZ 2DC探索其他光谱学中无法访问的集体激发的独特能力。