有限保修 – Uplink 设备 Uplink 向直接从 Uplink 购买 Uplink 设备的各方(即其授权分销商而非任何其他方)保证,自购买之日起 12 个月内,如果 Uplink 设备严格按照 Uplink 和(如果适用)制造商的要求进行安装、操作、维护和维修,则不会出现材料和工艺缺陷。如果 Uplink 设备在保修期内因材料或工艺缺陷而出现故障,Uplink 将自行选择免费维修或更换该设备。Uplink 同意维修(使用全新或翻新零件)或更换(使用类似的全新或翻新 Uplink 设备)是针对材料或工艺存在缺陷的 Uplink 设备的唯一补救措施;只要 Uplink 愿意并能够按照上述规定维修或更换有缺陷的设备,或者 Uplink 自行选择退还已支付的购买价,则此补救措施不会被视为未能达到其基本目的。从分销商处购买上行链路设备的各方对于其可能存在的任何产品索赔均应联系分销商。
摘要:美国国防部使用受激辐射光放大(即激光或激光器)并非新鲜事,包括激光武器制导、激光辅助测量,甚至将激光用作武器(例如机载激光器)。激光用于电信支持也并非新鲜事。光纤中激光的使用已经颠覆了人们对通信带宽和吞吐量的认识。甚至在太空中使用激光也不再是新鲜事。激光正用于卫星到卫星的交联。激光通信可以使用数量级更少的功率传输数量级更多的数据,并且可以将发送和接收终端的暴露风险降至最低。新颖之处在于使用激光作为卫星系统地面部分和空间部分之间的上行链路和下行链路。更重要的是,使用激光在移动的地面部分(例如海上的船舶、飞行中的飞机)和地球同步卫星之间发送和接收数据正在蓬勃发展。本文探讨了使用激光作为连接地面和太空系统的卫星通信信号载体的技术成熟度。本文的目的是制定关键性能参数 (KPP),为美国国防部近期卫星采购和开发的初始能力文件 (ICD) 提供参考。通过了解使用激光而不是传统射频源作为卫星上行和下行信号载体的历史和技术挑战,本文建议美国国防部使用激光从需要保持低检测、拦截和利用概率的移动平台发送和接收高带宽、大吞吐量数据(例如,航母战斗群穿越敌对作战区域,无人机在敌方区域上空收集数据)。本文还打算确定商业部门的早期采用者领域以及可能适应使用激光进行传输和接收的领域。
30W。PoE 总功率预算高达 225W。• 支持 3 种工作模式。(默认、VLAN、CCTV)。• 支持 VLAN 和 CCTV 模式下的 PoE 看门狗。它提高了摄像机的在线率。
在云时代,您需要直接安全地将分支机构与云连接起来。通过单个中央门户的连接成本很高,并且基于云的应用程序无反应。opbmized直接上行链路链路Selecbon确保快速云托管的SaaS应用程序。CloudGen防火墙可让您替换昂贵的MPLS Connecbons,每SDWAN CONNECBON最多24个键合宽带上行链路,以提高适用性性能和内置的冗余。
针对小型企业的全面和集成的保护•NGFW被部署在流出量上,以在下行链路,上行链路中的GE接口以及3G/4G LTE备份备份上行链路上提供GE和Wi-Fi接口。4G LTE备份VPN隧道或两个LTE上行链路可以创建用于冗余。•可以与敏捷控制器一起部署NGFW,以形成分支访问安全解决方案,该解决方案提供有线和无线用户以及门户定制的统一身份验证。集中的服务管理简化了管理分支机构的困难,同时仍允许分支机构进行平台定制以执行目标营销。•基于应用程序和网站类别的精制带宽管理可以优先考虑关键任务服务的带宽。
摘要 - 在本文中,我们考虑了启用双向物联网(IoT)通信系统的光线(LIFI),分别在下行链路和上行链路中使用可见光和红外光线。为了有效地提高双向Lifi iot系统的能量效率(EE),具有服务质量(QoS)的非正交多重访问(NOMA) - 保证最佳功率分配(OPA)策略可用于最大程度地提高downlink和Uplink chan-nink-chan-nells的EE。我们根据下行链路和上行链路通道中最佳解码顺序的识别得出封闭形式的OPA集,这可以实现低复杂功率分配。此外,我们通过共同考虑用户的频道增益和QoS要求,提出了一种自适应渠道和基于QoS的用户配对方法。我们进一步分析了双向Lifi iot系统中下行链路和上行链路通道的EE和用户停电概率(UOP)性能。广泛的分析和仿真结果表明,与正交多重访问(OMA)和NOMA相比,NOMA具有OPA的优势,并具有典型的基于信道的功率分配策略。还表明,所提出的自适应渠道和基于QoS的用户配对方法极大地超过了基于频道/QoS的方法,尤其是当用户具有不同的QoS要求时。
5G 是蜂窝网络的第五代技术标准。它有三个主要应用需求,即增强移动宽带 (EMBB)、大规模机器类型通信 (MMTC) 和超可靠低延迟通信 (URLLC)。URLLC 是一项非常具有挑战性的需求,具有严格的可靠性和延迟要求。到 2022 年,它已得到高度规范,5G 供应商将在不久的将来开始实现基本的 URLLC 功能。本论文的动机是找到方法来测量 5G 独立 (SA) 网络在关键 URLLC 性能指标上的表现,分析和可视化这些测量结果,找出某些网络行为的原因,并估计不同的 URLLC 功能在实施时会产生什么样的影响。此外,另一个动机是找到一种方法来检测数据包丢失及其背后的原因,因为数据包丢失会严重损害可靠性,在部署 URLLC 功能之前应将其最小化。为了测量 5G SA 网络的性能,确定了四种不同类型的测试用例,其中生成了 URLLC 类型的网络流量。在 5G 小区的良好覆盖和不良覆盖下进行静态测试,在连接到同一 5G 小区时从良好覆盖移动到不良覆盖进行移动性测试,以及在切换测试中更改 5G 小区。所有测试均在 5G 现场验证环境中完成,包括下行链路和上行链路。对于下行链路,小区内的覆盖和移动性对单向延迟没有显著影响。这主要是因为不需要数据包重新传输,否则会增加延迟。这对于移动 URLLC 用例(例如车对万物通信 (V2X))尤其有前景。上行链路表现要弱得多,主要是因为上行链路资源调度和数据包重传。切换对于下行链路和上行链路都是有问题的,因为小区变化导致延迟短暂但大幅增加。测量中的所有数据包丢失都发生在上行链路传输中,本论文包括一个案例研究,其中导致数据包丢失的不同潜在因素被一致消除。最后,数据包丢失的原因指向用于测试的 5G 芯片组。
连接管理可以自动化,并由外部地面应用程序(例如,ATC 程序或自动化)驱动,达到民航局 (CAA) 或服务提供商所需的程度。完全手动的连接管理方法(如纯语音系统中所需的)始终是一种选择。或者,可以使用半自动化方法,即在地面用户启动下将新信道分配上行链路到适当的机载无线电,然后由飞行员“激活”以实现实际的信道更改。最后,可以使用完全自动化的方法,即在无需地面用户干预的情况下,在外部地面应用程序的直接控制下将新信道分配上行链路到适当的机载无线电,然后由飞行员“激活”以实现更改。
- 成立于1991年,是美国主要的SAR数据下行链路和处理中心 - 运营3个天线,用于命令上行链路链路和数据下行链路,NASA和非NASA遥感卫星系统
卫星量子通信的进步旨在通过提高传输信息的安全性来重塑全球电信网络。在这里,我们研究了大气湍流对地面站和卫星之间光学区域中连续变量纠缠分布和量子隐形传态的影响。更具体地说,我们研究了在下行链路和上行链路场景中,由于分布中的各种误差源(即衍射、大气衰减、湍流和探测器效率低下)导致的纠缠退化。由于使用这些分布式纠缠资源的量子隐形传态协议的保真度不够,我们包括一个中间站,用于状态生成或光束重新聚焦,以分别减少大气湍流和衍射的影响。结果表明,在低地球轨道区域的下行链路中,自由空间纠缠分布和量子隐形传态是可行的,但在中间站的帮助下,在上行链路中也是可行的。最后,完成恶劣天气条件下微波光学比较研究,以及地地和卫星间量子通信水平路径研究。