机场/直升机场目视进近坡度指示器 [VASI]/精密进近航道指示器 [PAPI]。VASIS:进近坡度指示器系统,由四个灯光装置组成,位于跑道左侧,形式为两个翼条,称为上风翼条和顺风翼条。如果上风条显示红色而顺风条显示白色,则表示飞机在斜坡上;如果两个条都显示白色,则表示飞机高度过高;如果两个条都显示红色,则表示飞机高度过低。一些为大型飞机服务的机场有三条目视进近坡度指示器系统 (VASIS),可为同一跑道提供两条目视下滑道 (GP)。目视进近坡度指示器系统可以设置为提供三种类型的眼距机轮高度 (EWH):V1(10 英尺)、V2(25 英尺)和 V3(25 英尺和 45 英尺)。
图 1.1 环境、飞行员和飞机的相互作用 3 图 1.2 事故下滑道 5 图 1.3 黑洞错觉 6 图 1.4 精密进近航道指示灯 6 图 1.5 哈德逊河迫降 14 图 2.1 陨石坑阴影错觉 24 图 2.2 视觉系统的主要组成部分和路径 26 图 2.3 人眼的横截面示意图 29 图 2.4 三种视锥细胞的光感受器吸收曲线 38 图 2.5 跑道的缩短示例 44 图 2.6 从高处看视角几何 47 图 2.7 转盘错觉 49 图 2.8 横向和内侧视角示意图 50 图 2.9 前庭系统组件 53 图 3.1 正弦波光栅 64 图 3.2 对比敏感度函数 65 图 3.3有用视野 71 图 3.4 平均左转安全裕度研究数据 75 图 3.5 视觉敏锐度与眩光敏感度之间的关系 76 图 4.1 3 度下滑道的高度和距离 91 图 4.2 目视俯视和目视直进进近描述 93 图 4.3 着陆进近的三张照片 94 图 4.4 降落在阿尔伯克基国际机场 96 图 4.5 亚速尔群岛葡萄牙丰沙尔的夜间延时照片 99 图 4.6 降落在巴西圣保罗马特雷机场 100 图 4.7 降落在澳大利亚汉密尔顿岛大堡礁机场的最后进近 102 图 4.8 降落在亚速尔群岛葡萄牙圣乔治岛的短距离进近 103 图 4.9 降落在爱沙尼亚塔林机场 103 图 4.10在南极麦克默多站着陆的简短最后阶段 105 图 4.11 空中加油照片 109 图 5.1 张开角度 120 图 5.2 着陆期间的高度提示 123 图 5.3 视网膜图像扩展以估计接触时间 128
SP-7 “CAN” AHRS(最多可连接 4 个以实现冗余,但每个 iEFIS 也能够根据精确的 GPS 测量显示地平线)。SP-6 “CAN” 指南针(最多可连接两个指南针系统)。RDAC XF 和 RDAC XF MAP – MGL 的新型发动机监视器。最多可连接 4 个,这意味着您可以监控最多 4 个发动机(包括涡轮机)。MGL 伺服 – 基于 CAN 的伺服兼容,在此阶段最多可连接三个(倾斜、俯仰和偏航)。MGL V6 和 MGL V10 VHF COM 无线电。这些完全兼容。最多可连接两个,并从任何 iEFIS 面板进行控制。MGL/Garrecht 模式-s 转发器。此远程安装转发器可由 iEFIS 面板完全控制。MGL 导航无线电。双 VOR、ILS、下滑道和标记接收器(目前正在开发中)。MGL 襟翼/配平电机控制器。此基于 CAN 的接口可直接驱动直流电机以控制襟翼和配平。
摘要 — 本文讨论了滑行道入口处机组驾驶技术质量评估问题。考虑到飞机控制指挥模式中的人为因素,明确了滑行道入口的边界。进入滑行道时,不仅要考虑动作的准确性,还要考虑飞机的空速。考虑了空速或迎角测量系统发生故障时收到警告的问题。开发的警告系统基于对飞行参数相关场的分析。在某些情况下,机组人员没有保持正确的飞行参数,而是不成比例地增加迎角,导致螺旋形飞行,或使飞机急剧俯冲并进一步与地面相撞。因此,有必要在进入滑行道之前评估机组驾驶技术的质量。当绕圈飞行时,这是从第四次掉头结束到着陆。机组人员的不正确操作与其紧张状态有关。还提供了一种系统,用于确定在人类操作员受到负面因素影响的情况下飞行技术质量的下降。该系统基于自相关函数的分析。索引术语——飞行路径;下滑道;人为因素;参数幅度。
无人机具有提高操作灵活性和降低任务成本的良好能力,我们正在利用固定翼无人机实现的自动航母着陆性能改进。为了展示这种潜力,本文研究了两个关键指标,即基于 F/A-18 大攻角 (HARV) 模型的无人机飞行路径控制性能和降低进近速度。着陆控制架构由自动油门、稳定增强系统、下滑道和进近航迹控制器组成。使用蒙特卡洛模拟在一系列环境不确定性下测试控制模型的性能,包括由风切变、离散和连续阵风以及航母尾流组成的大气湍流。考虑了真实的甲板运动,其中使用了海军研究办公室 (ONR) 发布的海军环境系统表征 (SCONE) 计划下的标准甲板运动时间变化曲线。我们通过数字方式演示了允许成功着陆航母的限制进近条件以及影响其性能的因素。
本文提出了一种两级数据驱动的数字孪生概念,用于飞机的自主着陆,并给出了一些假设。它具有一个用于模型预测控制的数字孪生实例;以及一个用于流体结构相互作用和飞行动力学的创新实时数字孪生原型。后者的数字孪生基于对高保真、粘性、非线性飞行动力学计算模型的预先设计的下滑道轨迹的线性化;并将其投影到低维近似子空间,以实现实时性能,同时保持准确性。其主要目的是实时预测飞行过程中飞机的状态以及作用于飞机的空气动力和力矩。与基于稳态风洞数据的静态查找表或基于回归的替代模型不同,上述实时数字孪生原型允许模型预测控制的数字孪生实例由真正动态的飞行模型而不是一组不太准确的稳态气动力和力矩数据点来告知。本文详细描述了所提出的两级数字孪生概念的构建及其通过数值模拟的验证。它还报告了其在斯坦福大学现成的无人机在自主模式下的初步飞行验证。
飞机于 05:16 1ST(23:46:50 UTC)开始下降进入香港。它对跑道 07L 进行了 ILS 进近。它在 2000 英尺(气压高度)处建立了 ILS(LOC 和 GS)。飞机在 ILS(LOC 和 GS)上建立后,没有观察到与 DFDR 数据的显着偏差。飞机从 1000 英尺无线电高度下降,配置为襟翼 30 着陆,减速板处于准备状态,正在接近跑道 07L。自动驾驶仪在 05:53:47 1ST 时(00:23:47UTC)处于下滑道 (G/S) 和定位器 (LOC) 模式,自动油门接合速度 (SPD) 模式。自动驾驶仪在 5:54:03 1ST 时(00:24:03 UTS)在 843 英尺 RA 处解除,而自动油门保持接合直到接地后,参考着陆速度 (VREF) 记录为 140 节,在进近过程中,计算空速保持在大约 145 节 (VREF+5)。进近过程中下降率保持在平均 800 英尺/分钟。
摘要:本文提出了一种考虑复杂舰船运动和风环境的舰载机自动着舰控制律,具体为预瞄控制与自适应非线性控制的综合策略。首先,在姿态控制环中采用增量非线性反步控制律,以提高飞机的抗干扰能力。其次,为提高恶劣海况下的下滑道跟踪性能,对舰载机运动进行预测,并将预测的运动引入最优预瞄控制制导律中,以补偿舰载机运动带来的影响。然而,预瞄控制本质上是一种最优控制律,需要建立状态空间模型,因此内环与外环控制的综合并不是那么简单。因此,需要对姿态-高度高阶系统模型进行低阶等效拟合,此外,还需要为低阶等效系统设计状态观测器,为着舰控制器提供所需状态。最后,为验证所提方法,以无人无尾机模型在不同海况下执行自动着舰任务,结果表明,自动着舰系统即使在恶劣海况下也能保证令人满意的着舰精度和成功率。
先进空中机动 (AAM) 飞机需要感知系统,以便在城市、郊区、农村和区域环境中实现精确进近和着陆系统 (PALS)。目前批准用于自动进近和着陆的最先进的方法将难以用于支持 AAM 操作概念。但是,来自其他应用和低 TRL 研究的技术和系统使用视觉、红外、雷达和 GPS 方法为 AAM 飞机进近和着陆提供基线感知和传感要求。本文重点介绍基于视觉的 PAL,以演示闭环基线控制器,同时遵守联邦航空管理局的要求和规定。共面算法确定姿势估计,并将其输入到扩展卡尔曼滤波器中。将 IMU 与视觉相结合,为 GPS 拒绝的环境创建传感器融合导航解决方案。状态估计会导致下滑道和定位器误差计算,这对于设计和推导 AAM PALS 的制导律和控制律至关重要。 IMU 和视觉导航解决方案为 AAM PALS 提供了有希望的模拟结果,更高保真度的模拟将包括计算机图形渲染和特征对应。
图 1:航空电子设备结构的简单分解,重点介绍选定的导航系统 航空电子设备(航空和电子相结合的术语)应用由于其运行环境而具有非常苛刻和严格的要求。飞机航空电子组件发生故障可能会立即危及生命。因此,必须密切监控和测量航空电子设备的各个方面,以发现安装和维修缺陷。 如图 1 所示,航空电子设备大致分为导航、通信、传感器、显示器和数据记录器等类别。除了电传电子控制飞行系统外,上述分类对大多数现代飞机(民用和军用)仍然有效。 本应用说明的重点是突出罗德与施瓦茨用于航空无线电导航信号的各种测试解决方案。此类信号包括甚高频全向无线电测距 (VOR)、仪表着陆系统 - 下滑道 (ILS-GS)、仪表着陆系统 - 定位器 (ILS-LOC) 和标记信标 (MB)。民用测距设备 (DME) 和军用战术空中导航 (TACAN) 已在应用说明 1GP74 中介绍,因此本文不再深入探讨。本文讨论了生成和分析测量解决方案;特别是,哪种解决方案最能满足不同航空客户的需求,无论是