接口和TM1650 通信,在输入数据时当SCL 是高电平时,SDA 上的信号必须保持不变;只有SCL 上的 时钟信号为低电平时,SDA 上的信号才能改变。数据输入的开始条件是SCL 为高电平时,SDA 由高变
2023 年全年,人工智能领域继续引起公众的极大兴趣,谷歌在年底向开发者和企业客户推出了新的大型语言模型 (LLM) Gemini,并因其在处理图像、视频和音频方面令人印象深刻的多模态性能而成为头条新闻。尽管谷歌后来承认了广为流传的批评,即宣传视频是“捏造或修改的”,但发布会还是引起了不小的轰动 (Edwards 2023)。视频中的演示 (2024) 似乎展示了 Gemini 在视觉数据中识别对象和关系,挑战用户进行有趣的游戏,同时解决自我即兴的场景。与此同时,公共部门广受欢迎的图像生成模型在全年仍然享受着快速增长,新的令人印象深刻的版本,如 DALL·E 3 和 Midjourney v.6 向公众发布。这两种模型都比以前的版本好得多,并且都继续以新的功能和变化令人眼花缭乱和兴奋。与此同时,Open AI 发布了 Sora 的测试版,这是一款备受吹捧但效果相当平淡的视频生成器。据 Open AI 称,如今,Sora 已提供给红队成员,以评估关键区域的危害或风险,并授予一些视觉艺术家、设计师和电影制作人的访问权限,以获得有关如何改进模型以最有效地帮助创意专业人士的反馈。2023 年对于人工智能开发者来说是多产的一年,公众不仅非常乐意尝试这些系统,而且还积极将其功能融入到他们的工作和创意生活中。人工智能领域为用户提供了大量机会,让他们可以注册一系列诱人的平台——无论是付费还是免费。
在本文中,我们在可测量的状态空间(x,x)上处理一个Markov链,该链具有一个过渡内核P,允许一些小型s∈X,也就是说,对于任何x∈X,a∈X,对于p(x,a)≥ν(x,a)≥ν(x,a)1 s(x)1 s(x)。在这种情况下,我们提出了在(x,x)上的p- invariant概率度量π的建设性表征,使得π(1 s)>0。当存在这样的π时,仅根据ν,p和s的有限线性组合,在加权或标准的总变化规范中近似。接下来,使用标准漂移型条件,我们提供近似的几何/子几何收敛界限。这些界限是完全明确的,并且尽可能简单。收敛速率是准确的,在原子情况下它们是最佳的。请注意,还讨论了在[HL20B]中引入的有限级分配子不能进行近似P的收敛速率。这是一种近似π的新方法,因为它不是基于p对π的迭代的收敛性。因此,我们不需要任何疗效条件。此外,证明是直接的。他们在非原子案例中既不使用分裂链,也不使用续签理论,耦合方法,也不使用光谱理论。从某种意义上说,这种具有小型马尔可夫链的方法是独立的。
原子和固态自旋集合是有前途的量子技术平台,但实际架构无法解析单个自旋。不可解析的自旋集合的状态必须遵循置换不变性条件,但目前尚不清楚生成一般置换不变 (PI) 状态的方法。在这项工作中,我们开发了一种系统策略来生成任意 PI 状态。我们的协议首先涉及用工程耗散填充特定的有效角动量状态,然后通过改进的 Law-Eberly 方案创建叠加。我们说明了如何通过现实的能级结构和相互作用来设计所需的耗散。我们还讨论了可能限制实际状态生成效率的情况,并提出了脉冲耗散策略来解决这些问题。我们的协议解锁了以前无法访问的自旋集合状态,这可能有利于量子技术,例如更强大的量子存储器。
摘要 — 最近,使用现代机器学习技术解码和解释脑信号的脑机接口 (BCI) 领域取得了实质性进展。虽然脑电图 (EEG) 提供了一种与人脑交互的非侵入性方法,但获取的数据通常严重依赖于受试者和会话。这使得将这些数据无缝整合到现实世界的应用中变得棘手,因为受试者和会话数据的差异可能导致漫长而繁琐的校准要求和跨受试者泛化问题。专注于稳态视觉诱发电位 (SSVEP) 分类系统,我们提出了一种生成高度逼真的合成 EEG 数据的新方法,这些数据不受任何受试者、会话或其他环境条件的影响。我们的方法称为主题不变 SSVEP 生成对抗网络 (SIS-GAN),它使用单个网络从多个 SSVEP 类别生成合成 EEG 数据。此外,通过利用固定权重预训练的主题分类网络,我们确保我们的生成模型对主题特定特征保持不可知,从而生成可应用于新的以前未见过的主题的主题不变数据。我们广泛的实验评估证明了我们的合成数据的有效性,在使用我们的主题不变合成 EEG 信号进行训练时,可实现卓越的性能,在零校准分类任务中可提高高达 16 个百分点。
摘要 自适应门控在通过经典循环神经网络 (RNN) 进行时间数据处理中起着关键作用,因为它有助于保留预测未来所需的过去信息,从而提供一种保持时间扭曲变换不变性的机制。本文以量子 RNN (QRNN)(一种具有量子记忆的动态模型)为基础,介绍了一类新型的时间数据处理量子模型,该模型保持了 (经典) 输入输出序列的时间扭曲变换的不变性。该模型称为时间扭曲不变 QRNN (TWI-QRNN),它在 QRNN 中增强了一种量子-经典自适应门控机制,该机制通过经典循环模型选择是否在每个时间步骤中根据输入序列的过去样本应用参数化酉变换。TWI-QRNN 模型类源自第一原理,其成功实现时间扭曲变换的能力已在具有经典或量子动力学的示例上通过实验证明。
微处理器的数据通过两线总线接口和TM1640 通信,在输入数据时当CLK 是高电平时,DIN 上的信号必须 保持不变;只有CLK 上的时钟信号为低电平时,DIN 上的信号才能改变。数据的输入总是低位在前,高位在后 传输.数据输入的开始条件是CLK 为高电平时,DIN 由高变低;结束条件是CLK 为高时,DIN 由低电平变为高 电平。
股派发现金红利人民币 1.00 元(含税),预计分配现金红利总额为 81,906,040.00 元(含税)。 本次利润分配不送红股,不以公积金转增股本。在实施权益分派的股权登记日前公司总股本如 发生变动的,拟维持分配总额不变,相应调整每股分配比例。截至本募集说明书签署日,公司 2023 年度现金分红事项尚需 2023 年度股东周年大会审议通过。
摘要 - 探索无人机(UAV)进行交付服务有望减少交付时间和人力资源成本。但是,这些无人机与地面的接近性可以使它们成为机会性犯罪的理想目标。因此,无人机可能会被黑客入侵,从目的地转移或用于恶意目的。此外,作为一种分散的(PEER-PEER)技术,区块链具有不大的潜力,可以在无人机之间实现安全,分散和合作的交流。考虑到这一目标,我们提出了区块链授权,不可变和可靠的交付服务(鸟类)框架,以应对数据安全挑战。鸟类通过可扩展网络部署通信中心。在鸟类的注册阶段之后,根据特定共识证明(POC)进行无人机节点选择,其中仅根据其信誉来评估无人机。选定的决赛入围者被授予Birds Global Order履行系统的证书。模拟结果表明,与常规溶液相比,鸟类需要更少的无人机,从而减少了成本和排放。所提出的鸟类框架满足了众多用户的要求,同时需要减少网络流量和消耗低能量。索引条款 - 无人飞机,可靠性,隐私,区块链和送货服务。
1 纳季兰大学医学院内科放射学系,纳季兰 61441,沙特阿拉伯;yealmalki@nu.edu.sa 2 世宗大学无人驾驶车辆工程系,首尔 05006,韩国;umair@sejong.ac.kr 3 Secret Minds,创业组织,伊斯兰堡 44000,巴基斯坦;engnr.waqasahmed@gmail.com 4 国立科技大学(NUST)机械与制造工程学院(SMME)机器人与智能机械工程系(RIME),H-12,伊斯兰堡 44000,巴基斯坦; karamdad.kallu@smme.nust.edu.pk 5 伊巴达特国际大学电气工程系,伊斯兰堡 54590,巴基斯坦 6 卡西姆大学医学院放射学系,沙特阿拉伯布赖代 52571;salduraibi@qu.edu.sa(SKA);al.alderaibi@qu.edu.sa(AKA) 7 纳季兰大学工程学院电气工程系,沙特阿拉伯纳季兰 61441;miditta@nu.edu.sa 8 扎加齐格大学人类医学学院放射学系,埃及扎加齐格 44631;maatya@zu.edu.eg 9 纳季兰大学应用医学科学学院放射科学系,沙特阿拉伯纳季兰 61441; hamalshamrani@nu.edu.sa * 通信地址:amad.zafar@iiui.edu.pk † 这些作者作为第一作者对这项工作做出了同等贡献。