摘要 - 在许多现实的设置中都出现了比擦除错误更难纠正的Quantum删除。因此,为量子缺失通道开发量子编码方案是相关的。迄今为止,对于哪些显式量子误差校正代码可以打击量子删除,尚不了解。我们注意到,具有t + 1距离的任何置换量量子代码都可以纠正量子和Qudit设置中任何正整数t的t量子删除。利用在擦除误差下的置换不变量子代码的编码属性时,我们得出了量子缺失下置换量的量子代码的相应编码边界。我们将注意力集中在n个Qubit置换不变的量子代码的特定家族上,我们称之为转移的GNU代码。这项工作的主要结果是它们的编码和解码算法可以在O(n)和O(n 2)中执行。
糖尿病影响着美国超过 3400 万成年人 [ 1 ],并且仍然是导致下肢截肢、终末期肾病、成人失明和死亡等疾病的重要原因 [ 1 , 2 ]。糖尿病是第七大致死原因,其中 2 型糖尿病 (T2DM) 占所有确诊病例的 90%–95% [ 1 , 2 ]。在 18 岁及以上的成年人中,超过 700 万人患有未确诊的糖尿病,根据空腹血糖或糖化血红蛋白 (HbA1c) 水平,约 35% 的人患有糖尿病前期 [ 1 ]。糖尿病诊断导致超过 700 万人次住院治疗和 1600 万人次急诊就诊,每年医疗保健的直接和间接费用估计超过 3270 亿美元 [ 1 ]。要控制血糖,需要采取全面的糖尿病管理方法,包括定期就诊以及充分的自我护理,如健康饮食、积极锻炼、遵照处方用药计划和监测血糖水平[3]。日常自我管理对于实现最佳疗效和预防糖尿病相关并发症至关重要[3-6];然而,个人往往无法达到自我管理的目标[7],常常缺乏已被证明有助于改善健康结果的针对特定疾病的支持[8,9]。社会支持——对某些个人或群体的接纳、关心、供给和帮助的感知,或对来自他人的实际支持的实现——已被证明会影响自我管理,从而改善生活行为、获得更好的临床疗效并减少社会心理症状[7,9-18]。在糖尿病中,社会支持被认为是自我管理的重要组成部分,有助于控制血糖、培养行为和技能以获得更健康的生活方式以及改善预后[7,10,18]。社会支持与诊断接受、情绪调整和减轻压力有关,当社会支持令人满意时,可以减轻糖尿病的痛苦和负担[10,14]。有证据表明,社会支持与糖尿病之间的关系存在不同的机制,这些机制通过知识和信息的交流以及资源获取方面的帮助来促进[6];然而,不同类型和性别的社会支持对患者的影响差异仍不清楚。然而,先前的研究确实表明,社会支持的影响在男性和女性之间往往不同[17]。因此,本研究的目的是调查社会支持的哪些成分影响血糖控制,并评估这些成分与血糖控制之间的关系在男性和女性 2 型糖尿病患者之间是否存在差异。
a 心理学博士学院,ELTE 罗兰大学,H-1064 布达佩斯,匈牙利 b 心理学研究所,ELTE 罗兰大学,H-1064 布达佩斯,匈牙利 c 大脑、记忆和语言研究组,认知神经科学和心理学研究所,自然科学研究中心,H-1117 布达佩斯,匈牙利 d 克劳德伯纳德里昂第一大学,CNRS,INSERM,里昂神经科学研究中心 CRNL U1028 UMR5292,F-69500 布龙,法国 e 思维与学习中心,生命历程发展研究所,人文科学学院,教育、健康和人文科学学院,格林威治大学,旧皇家海军学院,SE10 9LS 伦敦,英国 * 联系方式:电子邮箱:dezso.nemeth@univ-lyon1.fr 1 DN和 KJ 共同担任高级作者。编辑:Jay Van Bavel
Jeffrey M. Erickson 上校是位于纽约西点军校的美国军事学院 (USMA) 陆军网络研究所所长。作为主任,Erickson 上校领导着一个 60 人的多学科研究机构,致力于扩大陆军对网络空间领域的了解。他的陆军生涯始于一名装甲军官,之后转入模拟作战职能领域,在过去 15 年中,他一直使用模拟训练从个人到联合和作战指挥级别的人员。他拥有美国军事学院计算机科学学士学位、鲍伊州立大学管理信息系统硕士学位以及艾森豪威尔学院(前身为武装部队工业学院)国家资源战略硕士学位。他的兴趣领域是实时虚拟建设性训练、测试和战争游戏的模拟。
在量子多体物理学中,基态上方谱隙的存在对基态关联和纠缠特性具有重大影响 [1, 2, 3, 4]。谱隙的闭合也与拓扑量子相变的发生密切相关,因为量子相的现代定义依赖于通过 Hastings 的准绝热演化概念存在的带隙汉密尔顿量路径 [5, 6, 7]。在汉密尔顿量的各种“局部”扰动下谱隙的稳定性是一个活跃的研究领域 [8, 9, 10, 11, 12],为了利用这些稳定性结果,拥有广泛的带隙汉密尔顿量网络用于进一步的稳定性分析当然是有益的。一般来说,有关谱隙的问题是物理学中许多最具挑战性的未决问题的核心。两个例子是霍尔丹的猜想,即反铁磁海森堡链的自旋值为整数时存在谱隙[13,14],以及杨-米尔斯质量间隙,这是一个千年难题。有关谱隙相关性的更多背景信息,请参阅[15,7]。鉴于谱隙的存在具有很强的物理意义,人们对确定严格推导谱隙的数学技术有着浓厚的兴趣。已经发现,除极少数例外,只有特殊的无挫折哈密顿量才适合严格推导。
该奖项受国防部 (DoD) 研究与开发 (R&D) 一般条款和条件的约束。本文件是这些一般条款和条件的一部分。本文件的第一部分是海军研究办公室 (ONR) 对国防部 R&D 一般条款和条件的附录,该附录使某些规定在某些情况下不适用,或为这些一般条款和条件中指定条款的部分提供与 ONR 奖项相关的额外内容。五个星号表示在所标识的部分和条款中,国防部 R&D 一般条款和条件的内容保持不变,并且未在本文件中重述。要了解给定条款的全部要求,必须结合阅读国防部 R&D 一般条款和条件与本 ONR 附录。本文件的第二部分包括适用于受本文件约束的 ONR 奖项的一般条款和条件的计划要求部分。本文件使用国防部 R&D 一般条款和条件序言中所述的通俗易懂的语言。 ONR 对国防部研发一般条款和条件的附录 * * * * * 第 2 部分:财务和项目管理(FMS 条款) * * * * * FMS 第二条。付款。 * * * * * C 节。电子资金转账和其他付款程序说明信息。 * * * * * 2. 其他付款程序说明或信息。
1 纳季兰大学医学院内科放射学系,纳季兰 61441,沙特阿拉伯;yealmalki@nu.edu.sa 2 世宗大学无人驾驶车辆工程系,首尔 05006,韩国;umair@sejong.ac.kr 3 Secret Minds,创业组织,伊斯兰堡 44000,巴基斯坦;engnr.waqasahmed@gmail.com 4 国立科技大学(NUST)机械与制造工程学院(SMME)机器人与智能机械工程系(RIME),H-12,伊斯兰堡 44000,巴基斯坦; karamdad.kallu@smme.nust.edu.pk 5 伊巴达特国际大学电气工程系,伊斯兰堡 54590,巴基斯坦 6 卡西姆大学医学院放射学系,沙特阿拉伯布赖代 52571;salduraibi@qu.edu.sa(SKA);al.alderaibi@qu.edu.sa(AKA) 7 纳季兰大学工程学院电气工程系,沙特阿拉伯纳季兰 61441;miditta@nu.edu.sa 8 扎加齐格大学人类医学学院放射学系,埃及扎加齐格 44631;maatya@zu.edu.eg 9 纳季兰大学应用医学科学学院放射科学系,沙特阿拉伯纳季兰 61441; hamalshamrani@nu.edu.sa * 通信地址:amad.zafar@iiui.edu.pk † 这些作者作为第一作者对这项工作做出了同等贡献。
摘要:生命最显著的特征之一是它能够处理新事物,即茁壮成长并适应新情况以及环境和内部成分的变化。了解这种能力对于几个领域至关重要:形式和功能的进化、生物医学有效策略的设计以及通过嵌合和生物工程技术创造新的生命形式。在这里,我们回顾了生物体解决各种问题的有启发性的例子,并提出了在任意空间中有效导航作为思考进化过程中认知扩展的不变量。我们认为,我们天生识别陌生伪装下的能动性和智慧的能力远远落后于我们在熟悉的行为环境中检测它的能力。生命的多尺度能力对于自适应功能至关重要,可以增强进化并为自上而下的控制(而不是微观管理)提供策略以应对复杂的疾病和伤害。我们提出了一种以观察者为中心的观点,该观点与规模和实施无关,说明了进化如何利用类似的策略来探索和利用代谢、转录、形态以及最终的 3D 运动空间。通过概括行为的概念,我们获得了关于进化、系统级生物医学干预策略以及生物工程智能构建的新视角。该框架是与高度陌生的实施方式中的智能相关的第一步,这对于人工智能和再生医学的进步以及在越来越多地由合成、生物机器人和混合生物组成的世界中蓬勃发展至关重要。
摘要:生命最显著的特征之一是它能够处理新事物,即茁壮成长并适应新情况以及环境和内部成分的变化。了解这种能力对于几个领域至关重要:形式和功能的进化、生物医学有效策略的设计以及通过嵌合和生物工程技术创造新的生命形式。在这里,我们回顾了生物体解决各种问题的有启发性的例子,并提出了在任意空间中有效导航作为思考进化过程中认知扩展的不变量。我们认为,我们天生识别陌生伪装下的能动性和智慧的能力远远落后于我们在熟悉的行为环境中检测它的能力。生命的多尺度能力对于自适应功能至关重要,可以增强进化并为自上而下的控制(而不是微观管理)提供策略以应对复杂的疾病和伤害。我们提出了一种以观察者为中心的观点,该观点与规模和实施无关,说明了进化如何利用类似的策略来探索和利用代谢、转录、形态以及最终的 3D 运动空间。通过概括行为的概念,我们获得了关于进化、系统级生物医学干预策略以及生物工程智能构建的新视角。该框架是与高度陌生的实施方式中的智能相关的第一步,这对于人工智能和再生医学的进步以及在越来越多地由合成、生物机器人和混合生物组成的世界中蓬勃发展至关重要。