对一些无限范围耦合的一些随机量子模型进行了简要调查,从量子iSing模型到Sachdev-ye-Kitaev模型。Sachdev-Ye-Kitaev模型是第一个实现广泛的零温度熵的模型,而无需呈指数较大的基态退化。该态度与缺乏其低能量谱的粒子样解释密切相关 - 它的频谱功能不是玻色子或费米子的功能,而是“普兰克安”,这意味着它们是能量/温度的通用功能。这些特性的一个不可思议的结果是,Syk模型在3+1维度中提供了有效的低能量理论,即在3+1个维度中提供了无苏匹配电荷或旋转的黑洞,从而导致了这种黑洞多体量子状态的密度的新结果。需要用于量子材料的非Quasiparticle金属状态,需要SYK模型的一种表面,称为二维Yukawa-Sachdev-ye-Kitaev模型。2Dysyk模型描述了在量子临界点位置的空间不均匀性的金属中的量子相变。这一扩展导致了在许多相关电子化合物中观察到的奇怪金属状态的通用理论,包括基于铜的高温超导体。
摘要:电池设计工作通常优先考虑提高活性材料的能量密度及其利用率。然而,优化电池单元和电池组级别的热管理系统也是实现与任务相关的电池设计的关键。电池热管理系统负责管理电池单元的热分布,对于平衡电池性能和寿命至关重要。设计这样的系统需要考虑电池单元和电池组内的众多热源。本文总结了使用等温电池量热法在几种商用锂离子电池单元中观察到的发热特性。主要重点是评估温度、C 速率和形成周期的影响。此外,模块级特性显示了模块互连产生的大量额外热量。在每个级别表征热特征有助于在设计、生产和特性阶段为制造提供信息,否则在整个电池组级别可能无法考虑到这些信息。对 5 kWh 电池组的进一步测试表明,由于冷却布置效率低下,可能会出现相当大的温度不均匀性。为了缓解这种挑战,提出了一种结合热特性和多领域建模的方法,提供了一种无需构建昂贵的模块原型的解决方案。
蓝色有机发光二极管(OLED)技术需要进一步的进步,而超荧光(HF)OLED已成为解决稳定性和颜色纯度问题的有希望的解决方案。影响HF-OLEDS性能的关键因素是Förster共振能量转移(FRET)。在这里,我们使用对比鲜明激活的延迟荧光(TADF)敏化剂研究了蓝色HF-OLED的FRET机制。我们证明,敏化剂的分子结构深刻影响了FRET效率,以螺旋罗连接的TADF Molecule Acrsa为例,TADF Molecule acrsa抑制了二面 - 角度的不均匀性和任何低能源构象异构体,这些构象异构体对末期发射极端发射极小。因此,可以将FRET效率优化至近100%。此外,我们演示了近乎理想的敏化剂的性质与理想的TADF发射器的分歧。与非HF设备相比,使用绿色敏化剂的蓝色HF-oleds具有外部量子效率的三倍(约30%)。这种新的理解为敏化剂设计打开了途径,表明绿色敏化器可以有效地泵送蓝色端子发射器,从而减少设备激素激素能量并改善蓝色OLED稳定性。
最近的研究表明,有效的热管理系统对于维持锂电池系统的性能,寿命和安全性是必要的。在这项工作中提出了一种独特而新颖的建模方法,其目的是估算用于大规模锂电池套件的空气冷却系统的热性能。总体模型由子模型组成,包括电池电池的分析模型和电池模块的数值热和流模型,分别针对实验数据和经验相关性进行了验证。所选方法意味着子模型可以独立运行,从而允许精确的瞬态仿真,并减少了处理时间。该模型用于评估细胞间距对专为混合动力汽车设计的气冷电池系统的热性能的影响。结果表明,细胞内的最高温度与横向和纵向俯仰比正相关。但是,模块的最大温度差与这些音高比率为负相关。相比之下,温度均匀性显示非单调的行为,使其成为平衡温度升高和热梯度之间的适用标准。此外,在早期行中注意到了相当大的温度不均匀性,随着俯仰比的降低,这变得不那么显着。
摘要:半导体纳米晶体中的载体旋转是量子信息处理的有前途的候选者。使用时间分辨的法拉第旋转和光致发光光谱的组合,我们证明了胶体CSPBBR 3纳米晶体中的光学自旋极化和相干自旋进液,这些纳米晶体一直持续到室温。通过抑制具有少量施加的磁场的不均匀性高纤维的影响,我们证明了接近纳米晶光发光生命周期的不均匀孔横向旋转旋转时间(T 2 *),从而几乎所有发射的光子都来自colent colehent colent colent colent spins spins spins spins。热激活的LO声子在升高温度下驱动额外的自旋去向,但在室温下仍观察到连贯的自旋进动。这些数据揭示了纳米晶和散装CSPBBR 3中的自旋之间的几个主要区别,并为在基于自旋的量子技术中使用金属 - 甲基钙钛矿纳米晶体打开了门。关键字:钙钛矿纳米晶体,旋转dephasing,t 2 *,时间分辨的法拉第旋转,旋转式,量子信息
hzμm-3(带有自旋型耦合系数,代表主要的系统不确定性)。我们在具有低应变梯度的单晶散装钻石中使用应变敏感的自旋态干涉仪(N- V)颜色中心。这种量子干涉量学技术对磁场对电子和核自旋浴的不均匀性产生了不敏感性,从而实现了长时间的N- V – Angelement Electemple-Electemple-Electemple-Electement Electem-Election旋转时间和增强的应变敏感性,并增强了该技术的潜在应用,并拓宽了相同的技术的潜在应用。我们在共聚焦扫描激光显微镜上首先证明了应变敏感的测量方案,从而提供了敏感性的定量测量以及三维应变图;第二位于宽阔的成像量子钻石显微镜上。我们的应变 - 显微镜技术可以快速,敏感的钻石材料工程和纳米化表征;以及基于钻石的菌株感测所应用的,例如在钻石砧细胞或嵌入式钻石应力传感器中,或内部通过粒子诱导的核后坐力引起的晶体损伤。
固定图案噪声(FPN)是由于成像传感器的反应中的不均匀性而在视频上存在的时间相干噪声。对于红外视频来说,这是一个常见的问题,它降低了观察者的质量并阻碍了随后的应用程序。在这项工作中,我们引入了FPN删除问题的概括,其中输入数据由具有相同FPN的几个不同序列组成。这是由红外摄像机通过镜子或相机本身(例如用于监视的镜子本身)捕获多个传感器的红外摄像机的动机。与从单个视图中的标准FPN删除问题相比,该多视图设置为FPN进行了更准确的估计。我们提出了一种新型的能量最小化,以进行多视图FPN去除,并提出了可以以离线和线路方式应用的两种优化算法。此外,我们还表明,提出的能量可以适应从单个视图中删除FPN的问题,并具有滚动窗口的方法,从而对最终的状态进行了显着改进。我们通过合成数据和来自监视红外摄像机的真实数据证明了所提出的方法的性能。
简介 磁法有多种应用,例如采矿勘探、未爆炸弹药 (UXO) 探测和考古学 (Nabighian 等人,2005)。概念始终相同:测量由于地面磁化不均匀性而导致的磁场横向变化。根据勘测目的,测量范围很广,从地面几平方米到高海拔的平方公里。通常,磁数据是使用光泵或质子进动原理的标量磁强计获得的。它们给出场的总磁强度 (TMI) 的伪绝对值。但是,这种技术有一些局限性。基于进动(质子和 Overhauser)的磁强计坚固耐用且非常简单。它们的灵敏度约为 0.1 纳特斯拉 (nT),但采样率不能超过几赫兹,这对于高速测量或测量更高频率的时间变化可能会有问题。基于光泵浦的磁强计具有高灵敏度,通常低于 0.01 nT。采集率高达几十分之一赫兹,但它们比进动类型更复杂且更脆弱。无论如何,测量的 TMI 包括设备本身的磁效应,这对精确测量来说是一个问题。磁化设备越大,它应该安装在离磁强计越远的地方。因此,紧凑型设备的设计十分困难。我们通过使用磁通门矢量磁力仪克服了这些限制。
在过去的 30 年里,增材制造 (AM) 或 3D 打印已成为许多工业和实践相关材料的著名制造技术。1–9 与传统的减材制造 (SM) 不同,AM 迅速普及,因为它能够从许多不同的起始材料创建更复杂的几何形状。10 立体光刻 (SLA)、选择性激光烧结 (SLS)、数字光处理 (DLP) 和熔融沉积成型 (FDM) 是一些广泛使用的 AM 技术。在这些方法中,FDM 可能是材料工程师和业余爱好者最常用的方法。FDM 涉及将熔融的长丝通过加热的喷嘴挤出到构建板上以形成部件,然后逐层构建直到完成最终的打印产品。虽然 FDM 是一种易于理解和采用的技术,但其主要缺陷在于成品打印件具有明显的各向异性。尽管这种特性的不均匀性通常会导致部件之间和部件之间的巨大差异,11 但仍然有许多商品聚合物长丝,包括丙烯腈丁二烯苯乙烯 (ABS)、聚乳酸 (PLA)、聚酰胺(例如尼龙)、聚碳酸酯 (PC)、热塑性聚氨酯 (TPU) 和聚对苯二甲酸乙二醇酯 (PET) 及其共聚物,都可以通过 FDM 以良好的尺寸保真度进行打印。
客机客舱是一个狭窄而封闭的空间,通常人口密度很高。由于现在的长飞行时间,热舒适度成为设计阶段需要考虑的重要因素。波音、空客等飞机制造商为改善热舒适度付出了相当大的努力(Pang et al. 2014)。有几种方法可以用来研究这类区域的热舒适度。在一些研究中,使用了著名的预测平均投票 (PMV) 模型(Fanger 1970),但也有一些研究进行了现场热舒适度调查。也可以采用数值模拟和计算流体动力学 (CFD) 来预测局部皮肤温度并计算热舒适度。Cui et al.(2014)在飞机客舱内进行了现场测量,以绘制空气温度、相对湿度、黑球温度和空气速度等影响参数。还对乘客进行了问卷调查。他们得出的结论是,乘客对热环境并不满意,因为他们感觉很热。热舒适度图表现出不均匀性;中舱的温度始终较高。但是,据报道,垂直温度梯度以及空气速度都在舒适区内。在另一项研究中,调查了飞机客舱乘客的局部和整体热舒适度(Park 等人,2011 年)。得出的结论是,模拟舱内的整体热感觉