通讯作者:Salim Barbhuiya(电子邮件:s.barbhuiya@uel.ac.uk)摘要:工程化的胶结复合材料(ECC)由于其出色的机械性能和耐用性,在建筑行业中引起了极大的关注。此彻底的评论对ECC研究的进度和前景进行了细致的分析。它是通过引入背景和基本原理来调查ECC的,同时概述了审查的目标。评论提供了对ECC的概述,包括其定义,特征,历史发展,组成和组成材料。重点是检查ECC的机械性能,特别是其弯曲行为,拉伸行为,抗压强度和对环境因素的抵抗力。此外,还讨论了ECC的流变特性,包括可加工性,流动性,自我修复,缓解裂纹,粘度和触变性。评论深入研究了纤维增强对ECC的影响,包括所用的纤维类型,它们对机械和结构特性的影响以及纤维分散和方向。此外,它探讨了ECC在各个领域的各种应用,例如结构应用和可持续建筑实践。与ECC相关的挑战和局限性,例如成本和可用性,以及对未来趋势和研究方向的探索。关键字:工程化的胶结复合材料(ECC),耐用性,可行性,裂纹缓解,纤维增强1.2023; Shumuye等。引言工程胶结复合材料(ECC)由于其在建筑行业中的独特机械性能和潜在的应用而引起了相当大的研究兴趣。ECC是一种纤维增强的胶结材料,具有特殊的拉伸应变能力,裂纹控制和耐用性。ECC的发展可以追溯到1990年代Victor C. Li及其研究小组的开创性工作(Li,1998)。进行了广泛的研究,以探索ECC的各个方面,旨在提高其机械性能,优化其矩阵设计并扩大其应用程序范围。研究研究了ECC的直接拉伸性质,重点是影响其行为和应变响应的因素(Yu等,2018; Li等,2001)。已经探索了不连续的微纤维作为延性ECC的内在加固,以增强其韧性和结构性能(Zhang等,2020)。聚乙烯醇(PVA)纤维由于其有利的分散特征和应变硬化行为而成为增强的流行选择(Lee等,2009)。研究人员还研究了ECC的矩阵设计,特别着重于实现防水性能并在恶劣的环境中增强其性能(Yu等,2017; Zhang et al。2023)。此外,已经针对促进环保建筑实践的ECC及其在基础设施中的可持续性及其应用程序(Li,2019; Zhu等人。2021; Mishra等。2023)。使用
2毛鲁理工学院(IMT)教授;概括。这项研究介绍了将石墨烯NAN板(GNP)掺入环氧树脂聚合物基质(Araldite Ly 5052)中,旨在改善材料影响性能。移植纳米复合材料对于研究高级材料至关重要,因为它提供了源自其结构的独特特性。植物反过来具有显着的电导率和热电导率,具有出色的机械电阻。这些特征使从电子设备到先进的结构材料的各种应用中具有高度有希望的石墨烯纳米复合材料。使用了水乳液方法,通过扫描电子显微镜(SME)(SME)评估环氧树脂中的GNP分散剂,并通过扫描探索性热量法(DSC)评估了热影响。结果表明该方法具有良好的可重复性,有效地从乳液中去除水,并导致令人满意的分散体。在撞击测试中,添加0.1%CNP揭示了材料的机械性能的改善。然而,高于此值的浓度没有提供额外的好处,在某些情况下,浓度会损害树脂的机械行为。尽管具有0.1%CNG的改进是显而易见的,但与其他研究的比较表明,尽管其生产和成本复杂,但氧化石墨烯(GO)还是有效的。复合材料由两个阶段,提名和加固形成。通常,矩阵是一种聚合物,金属或陶瓷材料。简介复合材料是多相材料,源自两种或多种材料的仔细组合,它们通常在相间牢固地结合在一起,其中一些最终性质超过了构成它的材料的特性。矩阵是周围材料的连续相位的连续相位,并填充了增援部队之间的区域,从而提供了复合材料的结构支持。加固,反过来是一个不连续的阶段,通常用于使矩阵改善其性质。此阶段由纤维,颗粒或其他形式组成,其方向,分散和体积对机械,物理,化学和各向异性特性有直接影响。许多天然和人造材料可以分类为复合材料,例如木材,骨头,增强橡胶,填充聚合物,混凝土,金属联盟,多晶骨料等(Hashin,1983)。复合材料的特定且高度有希望的类别称为聚合物纳米复合材料。聚合物纳米复合材料通常被定义为聚合物基质和小于100 nm的尺寸的增强的组合。这些添加剂可以是一个维度(例如纳米管和纤维),两个维(例如层)或三维(包括球形颗粒)。在过去的几十年中,这种类型的材料吸引了学术界,就像少量的纳米活性一样,该材料的机械性能有了很大的一般改进。这一事实是由于与微观和宏观添加剂相比,纳米活性体积的表面积比较高(Mai等,2006)。是石墨烯,这种材料在科学和技术领域非常相关。他的发现发生在2004年,曼彻斯特大学的研究人员于2010年赢得了诺贝尔物理奖。它的结构由以六边形形式组织的单层碳原子组成,并以SP 2的形式杂交,将石墨烯性能
概述 本文件介绍了那他珠单抗的使用,该药物已获美国食品药品管理局 (FDA) 批准作为输注单药疗法,用于治疗复发型多发性硬化症成人患者,包括临床孤立综合征、复发缓解型或活动性继发进行型多发性硬化症。那他珠单抗会增加进行性多灶性白质脑病 (PML) 的风险。在开始和继续治疗时,医生应考虑预期收益是否足以抵消风险。那他珠单抗还被批准用于诱导和维持对传统克罗恩病疗法和 TNF-α 抑制剂反应不足或不耐受的中度至重度活动性克罗恩病成人患者的临床反应和缓解。Tysabri(natalizumab)是参考那他珠单抗药物;Tyruko(natalizumab-sztn)是 Tysabri 的生物仿制药。多发性硬化症是一种中枢神经系统自身免疫性炎症性脱髓鞘疾病。该疾病的常见症状包括疲劳、麻木、协调和平衡问题、肠道和膀胱功能障碍、情绪和认知变化、痉挛、视力问题、头晕、性功能障碍和疼痛。多发性硬化症可细分为四种表型:临床孤立综合征 (CIS)、复发缓解型 (RRMS)、原发进行性 (PPMS) 和继发进行性 (SPMS)。复发性多发性硬化症 (RMS) 是所有复发型多发性硬化症的总称,包括 CIS、RRMS 和活动性 SPMS。多发性硬化症的治疗目标是防止复发和病情逐渐恶化。目前可用的疾病改良疗法 (DMT) 对复发缓解型多发性硬化症最有效,对继发进行性衰退效果较差。DMT 包括注射剂、输液疗法和口服剂。美国神经病学学会 (AAN) 指南建议对近期出现临床复发或 MRI 活动的复发型多发性硬化症患者开始进行疾病改良疗法。指南还建议,如果患者在讨论风险和益处后希望开始治疗,且经历过一次临床脱髓鞘事件和两次或两次以上符合多发性硬化症的脑损伤,则可采用 DMT 治疗。指南并未推荐哪一种 DMT 优于另一种。但是,某些 DMT 被推荐用于某些多发性硬化症亚群,包括推荐使用那他珠单抗治疗高度活跃的疾病。克罗恩病是一种影响胃肠道粘膜的慢性复发性炎症性肠病。瘘管形成、裂隙、不连续的肠道和全层受累以及肠壁增厚和肠外表现,包括关节炎、皮肤和眼部表现、代谢缺陷、高凝状态和肝胆疾病是常见的并发症。治疗方案包括 5-ASA 产品、糖皮质激素、抗生素、免疫抑制药物、甲氨蝶呤和靶向免疫调节剂。那他珠单抗对进行性多灶性白质脑病 (PML) 有黑框警告。那他珠单抗会增加 PML 的风险,PML 是一种机会性脑部病毒感染,通常会导致死亡或严重残疾。PML 的风险因素包括治疗持续时间、之前使用免疫抑制剂和存在抗 JCV 抗体。监测患者,并在出现 PML 的第一个迹象或症状时立即停止使用那他珠单抗。由于这种安全问题,那他珠单抗通常仅用于对多发性硬化症或克罗恩病的反应不足或无法耐受替代疗法的患者。那他珠单抗 i 仅通过风险评估和缓解策略 (REMS) 下名为 TOUCH 处方计划的限制分发计划提供。
图 6-2. 设备符号修饰符字段 ...................................................................................................... 6-4 图 7-1. 边界修饰符字段 .............................................................................................................. 7-2 图 7-2. 友方侧边界示例 ...................................................................................................... 7-3 图 7-3. 友方后方边界示例 ...................................................................................................... 7-4 图 7-4. 友方前方边界示例 ...................................................................................................... 7-4 图 7-5. 敌方侧边界示例 ...................................................................................................... 7-4 图 7-6. 线路修饰符字段 ............................................................................................................. 7-6 图 7-7. 相线上的友方出发线示例 ............................................................................................. 7-6 图 7-8. 区域修饰符字段 ............................................................................................................. 7-7 图 7-9. 友方集合区和接送区示例 ............................................................................................. 7-7 图 7-10.点修饰符字段................................................................................................................ 7-8 图 7-11. 友军弹药转运点和 VIII 级补给点示例............................................................................... 7-9 图 7-12. 相线上友军 FSCL 示例............................................................................................. 7-10 图 7-13. 友军禁火区示例............................................................................................................. 7-10 图 7-14. 目标标签字段.................................................................................................................... 7-10 图 7-15. 核攻击/事件.................................................................................................................... 7-11 图 7-16. 生物事件.................................................................................................................... 7-11 图 7-17. 化学事件.................................................................................................................... 7-11 图 8-1. 安装符号组件............................................................................................................. 8-1 图 8-2. 安装符号修饰符字段............................................................................................. 8-3 图 9-1.图 9-2. 稳定作战和支援作战符号组成部分....................................................... 9-1 图 9-2. 稳定作战和支援作战符号修饰符字段........................................ 9-3 图 A-1. 决策图形和战术任务图形示例............................................................... A-7 图 B-1. 空降步兵师.......................................................................................................B-1 图 B-2. 空中突击步兵师................................................................................................................B-2 图 B-3. 装甲师................................................................................................................................B-2 图 B-4. 机械化步兵师................................................................................................................B-2 图 B-5. 轻步兵师.............................................................................................................................B-3 图 B-6. 步兵师.............................................................................................................................B-3 图 B-7. 海军陆战队师.............................................................................................................B-3 图 B-8. 斯特赖克旅战斗队.............................................................................................................B-4 图 B-9. 补给地点.............................................................................................................................B-4 图 B-10. 战斗勤务支援部队.........................................................................................................B-5 图 B-11. 带标签字段的单位符号............................................................................................B-6 图 B-12. 带标签字段的装备符号............................................................................................B-7 图 B-13.图 B-14. 带标签字段的安装符号................................................................................................B-8 图 C-1. 带标签字段的稳定操作和支援操作符号......................................................................................C-1 图 C-2. 不连续的操作区域......................................................................................................C-2 图 C-3. 稳定操作和支援操作....................................................................................................C-2 图 C-4. 战斗勤务支援操作....................................................................................................C-3 图 D-1. 条形状态图示例.............................................................................................................D-2...........................................................................................B-3 图 B-8. 斯特赖克旅战斗队.....................................................................................................B-4 图 B-9. 补给地点.....................................................................................................................B-4 图 B-10. 战斗勤务支援单位.........................................................................................................B-5 图 B-11. 带标签字段的单位符号.............................................................................................B-6 图 B-12. 带标签字段的设备符号.............................................................................................B-7 图 B-13. 带标签字段的安装符号.............................................................................................B-8 图 B-14. 带标签字段的稳定作战和支援作战符号.............................................................................B-8 图 C-1. 相邻作战区域.............................................................................................................C-1 图 C-2. 不相邻作战区域.............................................................................................................C-2 图 C-3. 稳定作战和支援作战.............................................................................................................C-2 图 C-4. 战斗勤务支援作战.............................................................................................................C-3 图 D-1.条形状态图示例................................................................................................D-2...........................................................................................B-3 图 B-8. 斯特赖克旅战斗队.....................................................................................................B-4 图 B-9. 补给地点.....................................................................................................................B-4 图 B-10. 战斗勤务支援单位.........................................................................................................B-5 图 B-11. 带标签字段的单位符号.............................................................................................B-6 图 B-12. 带标签字段的设备符号.............................................................................................B-7 图 B-13. 带标签字段的安装符号.............................................................................................B-8 图 B-14. 带标签字段的稳定作战和支援作战符号.............................................................................B-8 图 C-1. 相邻作战区域.............................................................................................................C-1 图 C-2. 不相邻作战区域.............................................................................................................C-2 图 C-3. 稳定作战和支援作战.............................................................................................................C-2 图 C-4. 战斗勤务支援作战.............................................................................................................C-3 图 D-1.条形状态图示例................................................................................................D-2.........................C-3 图 D-1. 条形状态图示例.....................................................................................D-2.........................C-3 图 D-1. 条形状态图示例.....................................................................................D-2
作为图书馆,NLM提供了对科学文献的访问权限,而无需暗示与其内容的认可或一致。NLM数据库包括来自各种来源的出版物。在本文中,我们通过采用极性“连续性/不连续性”和“稳定/不稳定”来区分一致性和发展的变化。一致性和变化通过组均值连续性/不连续性和个体阶稳定性/不稳定来跟踪。这两种观点在概念上和经验上都是对发展的部分正交观点。发展科学侧重于一致性和随着时间的变化。平均水平的连续性/不连续性以及个人秩序稳定性/不稳定性信息和方法论,可以同时分析。并非所有的发展变化都涉及转化;一致性也起着作用。我们正式化并解释了这两个概念,因为过去许多学者对它们进行了研究。####这是重写文本:我们需要在这里讨论下一个逻辑当代治疗,尤其是在定量方面。一些发育主义者还使用定性变化,例如从手势转变为“不连续”。令人惊讶的是,我们的领域仍然缺乏词汇来区分现在的基本结构,例如连续性和稳定性。我们选择了这两个术语 - 连续性和稳定性 - 分别描述群体平均值和个体差异的一致性。连续特征是随着时间的流逝显示相同平均水平的特征。19–40。为了使读者更容易,我们从一个发展领域(语言)中绘制示例 - 但这些概念适用于个人,二元组和环境的所有领域和特征。将连续性视为一致性,而不连续性是变化,在特征到时间的特征的平均水平中。不连续的,随着时间的流逝,平均水平增加或下降。在两个紧密间隔的时间点之间,儿童词汇可能不会改变,但是在其他可能相同或肯定会在长期儿童中肯定会改变其词汇量的其他人之间的变化。将稳定性视为一致性,而不稳定性是变化,以相对的顺序,地位或群体等级,或者在特征上的特征中。稳定的特征是某些人在一个时间点和以后的时间点显示较高的水平。如果个人不随着时间的流逝保持相对秩序,则会表现出不稳定。随着时间的流逝,孩子们倾向于保持其语言能力的相对顺序。效果大小可以测量数据集中的不连续性,变化或稳定性的幅度。在重复测量分析中,诸如学生配对t检验或f检验之类的平均差异测试用于索引不连续性。效果大小是通过将两个均值之间的差额除以汇总的标准偏差来计算的。效应大小的常用经验法则是科恩的D,其效果将效果分为小(d = 0.20),培养基(d = 0.50)和大(d = 0.80)。Holliday-Brady等,编辑。对于多元F检验,部分ETA方(η2p)提供了效果大小的替代度量。相关性用于索引稳定性。相关的大小通常使用Cohen's R测量,该R将效果分为小(r≈0.10),培养基(r≈0.30)或大(r≈0.50)。尽管它们的重要性,但连续性和稳定性通常与潜在变化模型相混淆。潜在变化模型在单个层面上测量开发的变化,提供有关发展功能的形状(包括截距和斜率)的信息。这些模型可以通知我们有关变量之间的初始位置,变化率和相关性。相比之下,连续性和稳定性仅需要一个单个测量点,从而使数据收集更加灵活。发展科学中的稳定性和连续性分析:理解潜在变化的互补方法。发展科学采用了一系列评估稳定性的方法,包括潜在变化模型。连续性分析在每个时间点都集中在相同的指标上,而稳定性分析不需要此约束。这种区别强调了连续性和稳定分析的互补性质,这些性质具有不同的目标并具有不同的数据需求。值得注意的是,Vineland自适应行为量表的通信结构量表表明,在3至4岁的儿童中,11个月(r = .86)和5至6年11个月(r = .89)的儿童以及18到57个月之间的平均话语(r = .11)和31和46个月(r = .11)和46个月(r = .12)。1995; 16(3):257–275。这种同源稳定性可以提供自由估计,给定共同的来源和方法差异,实践效果和其他因素。相比之下,异型稳定性模拟了在理论上相关的不同明显特征跨个体顺序的维护。例如,3年的口头生产预测了5年的语言理解(13),而在4年以4年的预测命名的命名和对字母系统的熟悉程度为5年(14)(14)。异型稳定性可能会提供保守的估计,这是由于评估测量和过程中使用的程序的差异。研究稳定性的关键挑战在于成分特征随发展而发生巨大变化。例如,20个月的成功沟通可能是通过理解,词汇和词相结合来指示的,而48个月的成功可能涉及口头上的复杂思想,理解单词关系,并以上下文和文化适当的方式进行交流。识别可靠的措施是该领域中的主要方法论问题。使用多种评估工具和跟踪各种变量在衡量儿童语言发展时会导致不一致的结果。潜在变量通过考虑不同的观点和测量方法来提供解决方案,从而在控制潜在偏见的同时提供了更准确的估计。这种方法允许随着时间的推移测量的变化,同时保持评估稳定性所需的可比性。引用了以下参考文献以支持这项工作:Hartmann等。19–40。稳定性通常被认为是个体内部的一致性,但也可以归因于支持特征稳定性的内源性因素或环境影响。补充稳定性的同型和异型模型是介导的稳定性,它描述了第三个变量如何影响两个特征之间的稳定性。例如,母亲的反应能力可以介导前语言手势和后来的残疾儿童语言发展之间的稳定性。通过考虑潜在的介体,研究人员可以确定随着时间的推移保持稳定性的基本机制。发展科学旨在描述,解释,预测和优化发展轨迹,涉及在整个寿命中追踪变化和连续性。随着时间的流逝,稳定性和转变的动态会显着影响个人和群体的经验和解释。具有独特特征的人,无论是一致还是改变,都以独特的方式与环境互动,塑造他们的未来发展。令人回味的互动的概念表明,一致的特征可以从社会和身体环境中引起特定的反应,从而影响以后的结果。例如,由于周围的人进行的调整以匹配他们稳定的语音模式,因此声音或非声音的婴儿以及健谈或默许的幼儿的童年经历不同。一致性和变化之间的相互作用是发展科学理论的基本方面。扫盲基础:幼儿对阅读发展的影响。理论家经常争论某些特征是稳定的特征还是瞬态状态,许多育儿和家庭功能理论依赖不变特征来支持更直接的发展模型。例如,亲子互动中的一致性有助于形成内部工作模型和基础依恋理论。相反,变化也是开发系统的关键特征,随着时间性嵌入了发育系统理论中,这意味着持续的转化。变化对于在进化论和发展理论中的适应性(例如弗洛伊德,埃里克森和伯爵提出的理论)中至关重要。发展变化可以是系统的,并且与年龄有关,规范性和历史相关,随机和非规范或与生命有关。发展理论跟踪了各个方面的这些变化,包括个体发生时间,家庭时间和历史时间。一致性和变化对测量具有重要意义,因为稳定的特征在心理上具有更大的意义,并且可以预测未来的结果。本质上,一致性和变化都是定义和理解发展过程的核心。发展科学的一致性是指特征随着时间的推移保持稳定或不变的程度。它通常与变化形成鲜明对比,但是研究表明一致性既不是绝对也不是静态的。相反,它存在于连续体中,并由各种因素(例如个体差异,年龄和环境环境)主持。Malden:Blackwell Publishing; 2002。pp。个体变化在塑造一致性方面起着重要作用,有些人比其他人更加一致。样本的发育阶段或年龄也会影响稳定性,而年龄较大的孩子通常比年轻的孩子表现出更大的一致性。此外,用于评估特征的方法可能会影响稳定性估计,并在不同时间应用的措施产生不同的结果。评估的持续时间和上下文也很重要,因为较短的间隔可能无法捕获变化或一致性的全部程度。此外,评估中使用的设置和参数可能会影响连续性和稳定性,并具有一致的设置,促进稳定性和不一致的设置会减弱它。一致性是依赖理论的,其存在或不存在可能受社会经济地位,环境条件和个人气质等因素的影响。总而言之,了解一致性和变化对于获得发展动态的全面图景至关重要,强调了在每种情况下考虑节制和上下文因素的必要性。儿童之间的相对发展位置可能会随着小组内部的差异而随着时间的流逝而变化,这对于科学家在跟踪进度时必须同时考虑连续性和稳定性至关重要。虽然孩子可能与以前保持同一水平,但如果小组中的其他人提前或回归,他们的相对位置仍然可能不稳定。这重点介绍了评估个人发展时对同伴变化的重要性。[Google Scholar] 11.Smith CE,Lerner MD。此外,区分对发展的时间方面的真正敏感性和未能捕获连续和稳定的品质的敏感性可能具有挑战性。在更长的时间内,将变化归因于测量错误,不同的上下文,实际发展,实践,熟悉度或交互式过程变得越来越复杂。连续性和不稳定性都可以预测与零没有显着的平均差异或相关性无明显的相关性,从而使它们在方法论和统计上有问题。此外,一致性和变化的概念本质上是模棱两可的,一致性可能表明韧性或不灵活性,并且变化表示灵活性或混乱。缺乏语言是某些自闭症谱系障碍(ASD)的标记,而语言丧失是痴呆症的指标。在人类发展中,一致的特征和变化的特征都是有意义的,反映了整个生长和适应的动态性质。优化发展科学项目的目标涉及调解该领域的两个基本动态,这既发人深省又具有挑战性。这一和解得到了NIH的NICHD的壁内研究计划的支持,所有作者都批准了最终的手稿提交。的“发展研究中的设计,测量和分析”(2015年),Kagan的“婴儿的变化和连续性”(1971),Lerner等。的“母亲和儿童语言中的名词和动词产生:跨越第二年的连续性,稳定性和预测”(2016年),Bornstein等。2.Fraley RC。的“人类发展的概念和理论”(2015年),麦考尔的“婴儿期智力功能的发展以及后来的智商的预测”(1979年),沃尔维尔的《行为发展研究》(1973年),Longobardi等,Longobardi等。在生物和社会风险中儿童生命的前十年中核心语言技能的稳定性(在印刷中),科恩的“行为科学的统计能力分析”(1988年)(1988年),伯恩斯坦的“人类婴儿……和其余的生命周期”(2014年)(2014年),Sparrow等。的“ Vineland自适应行为量表调查表格手册(访谈版)”(1984),Blake等。的“评估自发语音样本中语法复杂性的定量度量”(1993),加文和吉尔斯的“样本量对学龄前儿童语言样本测量的时间可靠性的影响”(1996),以及Beals等。的“谈论和倾听,支持低收入家庭的儿童的早期扫盲发展。”产妇反应能力与学龄前儿童的语言发展之间的关系。应用发育心理学杂志。doi:10.1006/jadp.1995.0036。[doi] [Google Scholar] 12.Hart B,Risley TR。在美国年轻儿童的日常经历中存在有意义的差异。纽约:Paul H Brookes Publishing; 1995。pp。[Google Scholar] 13.Lerner MD,Smith CE。幼儿园识字成就的早期育儿和学龄前预测指标。儿童发展。1999; 70(2):342–354。 doi:10.1111/0003-0340.E00363。 3. Bronfenbrenner U&Morris PA。 4.Ayer L&Bornstein MH。 5.Bornstein MH。1999; 70(2):342–354。doi:10.1111/0003-0340.E00363。3. Bronfenbrenner U&Morris PA。 4.Ayer L&Bornstein MH。 5.Bornstein MH。3. Bronfenbrenner U&Morris PA。4.Ayer L&Bornstein MH。5.Bornstein MH。[doi] 1.Bowlby J.依恋理论是一种心理模型,探讨了人类如何与他人(尤其是看护者)建立密切联系。通过荟萃分析和动态建模研究了从婴儿期到成年的依恋关系的稳定性。人类发展的生物生物学模型提出,人类发展是由多个环境造成的。阶段理论描述了在不同生活阶段的人类发展的发展。发展心理学的重点是了解人类从出生到老年的认知,社会和情感上如何发展。整个生命周期和个人之间的发展变化可能是定量的或定性的。人类发展的变化可以描述为定性或定量,一些理论提出了预定的表观遗传学方法。这个概念通常与埃里克森的工作和关键时期假设有关。这里的关键点是,对发展变化的不同描述和解释涉及三个维度的各种位置:描述性连续性 - 透视,解释性的连续性 - 透视性和定量质量质量维度。可以通过各种方式将描述性和解释性方法组合在一起,例如描述性定性连续性具有解释性的定量不连续性,反之亦然。例如,随着时间的推移,诸如情绪之类的人格特质可能在质量上保持相同,但表现出定量变化(例如,微笑频率)。这种现象可以通过连续或不连续的原则来解释。解释的选择取决于正在研究的发展的特定领域和一个人的发展理论。最终,涉及人类生活的耦合将取决于实质领域和一个人的基本发展理论。变化的概念深深植根于对发展的特定理论观点,这表明将人们的观点限制在特定变量或过程中可能会阻碍对发展过程中发生的复杂变化的理解。相反,理论在塑造我们对发展中的连续性或不连续性的看法中起着至关重要的作用。Heinz Werner强调了考虑变化的定量和定性方面的重要性,并承认对这两个维度的全面理解对于掌握发展过程至关重要。定量变化涉及发展变量或过程的数量,频率,幅度或幅度的变化。例如,考虑一个人的体重在不同年龄段测量:显着的变化发生在12到13年之间,从125磅增加到150磅。但是,这种变化也可以是逐渐的,即单个每年增加5磅,尽管偶尔会出现差距,导致不断变化。相比之下,定性变化着重于开发过程中新品质或特征的出现。这包括表观遗传,其中涉及区分现有和新获得的特征。通过承认变化的定量和定性方面,研究人员可以对发展过程有更细微的理解。Werner的变化概念突出了有机体发展的本质。发展涉及新兴的变化,这些变化带来了质性上的新事物,与以前存在的不同。例如,从橙子集合到拥有摩托车是这样更改的一个例子 - 不能将其简化为先前的状态。同样,青春期引入了新的驱动器,性欲,该驱动器是一个独立的实体,不能完全归因于诸如饥饿和口渴之类的现有驱动器。这种出现代表了定性的不连续性,在这里出现了新的质量,而不会降低其前辈。此外,紧急变化表现出熟悉感 - 缺乏中间阶段,这表明早期和后期状态之间的连续性。正如Werner所指出的那样,两个关键特征定义了定性变化:出现(以前的状态不可减至)和粘度(缺乏中间步骤)。相比之下,单独的特征可以描述定量不连续性,现在它被更好地称为突然性,以避免与定性不连续性混淆。Werner的工作的关键要点是,他帮助阐明了发育变化中连续性透视的概念,使我们能够区分不同类型的连续性,例如定量和定性的连续性。
本文讨论了与求解麦克斯韦方程的电磁理论和数值方法有关的几篇关键论文。麦克斯韦(Maxwell)于1865年发表的一篇论文提出了电磁场的动力学理论。后来,Chew等。(2020)使用标量和矢量电位公式来简化量子麦克斯韦的方程。本文还引用了几本关于电磁波理论的书籍,包括Kong(1990)和Balanis(2012)的“电磁波理论”和“高级工程电磁学”。讨论了与有限差分时间域(FDTD)方法有关的几篇论文,该方法是由Yee于1966年引入的。FDTD方法是一种用于求解Maxwell方程的数值技术,并且已广泛应用于各个领域。本文还提到了FDTD方法的几种关键算法和应用,包括使用完美匹配的层(PML)吸收电磁波。PML首先是由Berenger于1994年引入的,此后已被广泛用于数值模拟。讨论的其他论文包括与FDTD方法的表面阻抗边界条件相关的论文,以及该方法对天线设计和海洋电磁作用的应用。总的来说,本文提供了与电磁理论和求解麦克斯韦方程的数值方法相关的关键论文和概念的全面概述。研究人员已经开发了使用有限差分时间域(FDTD)算法在复杂介质中模拟电磁波的各种方法。mag。,IEEE Trans。修订版这些方法涉及完美的匹配层(PML),用于在边界处吸收波浪并防止反射。一种方法,称为卷积完美匹配的层(CPML),已被证明是对任意媒体的高效和有效的。此方法使用卷积操作在FDTD算法中实现PML。其他研究人员研究了使用差异形式和指标来开发新方法来模拟复杂介质中的电磁波。这些方法已应用于各种问题,包括磁化铁氧体中电磁波的模拟和人体组织的建模。FDTD算法也已用于模拟电磁波和分散材料(例如等离子体电层)之间的相互作用。在这些模拟中,使用数值方法求解波方程,该方法考虑了材料的分散属性。此外,研究人员还开发了使用卷积PML在光导天线中实施开放边界问题的方法。这些方法涉及使用递归卷积操作在FDTD算法中实现PML。总体而言,在复杂介质中模拟电磁波的新方法和算法的开发是一个活跃的研究领域,在电磁,光学和生物医学等领域中应用。研究人员一直在积极开发和应用有限差分时间域(FDTD)方法来解决复杂的电磁问题。在信誉良好的期刊(例如IEEE Microw)上发表的研究论文。该方法已成功用于分析非线性电路元件,模拟金属纳米甲膜和研究纳米颗粒。为了提高数值稳定性和准确性,研究人员提出了各种技术,例如网状分级和自动网格产生。这些进步使得对复杂几何形状的更有效,更可靠的模拟为材料科学和生物医学工程等领域的新应用铺平了道路。本文讨论了有限差分时间域(FDTD)方法的各种进步,以模拟复杂介质中的电磁波。研究人员推出了新技术,以提高FDTD模拟的准确性和稳定性,例如用于非矩形边界的张量FDTD公式和用于有效计算的亚架算法。子生产是一种通过将仿真域分为较小的子网格来降低计算复杂性的方法,从而使收敛速度更快并提高了精度。本文重点介绍了几种子生产方法,包括局部网格细化,子电池FDTD建模和三维子生产算法。除了亚种植外,研究人员还研究了提高FDTD模拟稳定性的方法。这包括研究可以在薄壁配方中产生的寄生解决方案,并为FDTD亚生成而产生一致且可证明的稳定配方。最近的研究重点是开发和推进有限差分时间域(FDTD)方法,用于模拟复杂的地球层系统中的电磁波传播。天线宣传,J。Comput。本文还提到了有关FDTD方法的其他几项研究,包括将EMP耦合到薄支撑杆和电线的有限差分分析,通过FDTD方法对光纤的快速单模表征以及圆柱形FDTD通过Anisotropic Dippiptipic Dippipic Diptrical FDTD分析通过各种倾向的浸入式浸润的地球媒体。研究探索了FDTD建模的各种应用,包括围绕地球球周围的冲动精灵(极低的频率)传播,Earth-Ionosphere波导的3D全局模型以及提高计算效率的并行化技术。研究人员还研究了提高FDTD模拟中稳定性和准确性的方法,例如质量大块,无条件稳定的隐式有限差异方法以及结合有限元方法(FEM)和FDTD的混合方法。此外,已经提出了各种新颖的算法和方案来增强FDTD方法的稳定性和性能,包括使用交替方向隐式方法和本地一维方案。在FDTD建模和仿真技术中的这些进展有望有助于提高对复杂的地球层系统中电磁波行为的理解和预测,并在电信,导航和地球物理研究等领域具有潜在的应用。有限差分时间域(FDTD)模拟的领域多年来已经显着提高,并开发了各种算法和方法,以提高准确性,分散性能和计算效率。phys。和Phys。XIU的另一本书着重于用于随机计算的数值方法。J.韩国物理学。e探索了对电磁波传播建模的不同方法,包括高阶FDTD方案,晶格模型和物理知识的机器学习。这些研究的重点是提高FDTD算法的准确性和分散性能,以及开发新方法,用于以控制精度和分散的控制顺序制定FDTD方案。研究人员还研究了深度学习技术(例如神经网络和深度丽思方法)的使用来解决部分微分方程和电磁问题。该领域的一些值得注意的论文包括Karniadakis等人,Raissi等,Sirignano等人和Qi等人的论文,这些论文证明了物理学知识的机器学习和深层神经网络的潜力,以解决复杂的电磁问题。此外,Hastings,Schneider和Broschat等研究人员还探索了Monte-Carlo FDTD技术,用于粗糙的表面散射。总体而言,先进的FDTD算法和方法的开发使电磁波传播的更准确,有效的模拟对诸如天线设计,微波工程和材料科学等田地的影响有显着影响。LeMaître和Knio的一本书为“用于不确定性量化的光谱方法:用于计算流体动力学的应用”,使用光谱方法探索了不确定性量化技术。几篇文章讨论了多项式混乱的使用来分析计算流体动力学(CFD)和电磁模拟中的几何不确定性。金属用于改进光学相干断层扫描。Soc。一篇文章介绍了一种基于FDTD的方法,用于建模几何不确定性,而另一篇是在有限差分时间域(FDTD)方法中进行不确定性分析。其他文章涵盖了电磁波传播,辐射和散射等主题;周期性结构;和光子带结构。一些文章讨论了使用非正交FDTD方法计算光子绿色功能和传输/反射系数的使用。文本还提到了其他一些研究论文,这些论文探讨了主题,例如金属光子晶体中的负折射,计算光子带结构,并分析负载的传输线负反射 - 反射 - 索引矩形。C. D.不连续的Galerkin时域模型,具有多速率时间步进的元图几何形状。在2021年IEEE MTT-S国际微波研讨会(IMS)(IEEE,2021).Guo,S。等。81,32–37(2022)。插图广告Google Scholar Eid,A.,Winkelmann,J。 A.,Eshein,A.,Taflove,A。 &Backman,V。光学相干断层扫描中的五帧对比的起源。 生物疾病。 选择。 Express 12,3630–3642(2021)。谷歌学者Cherkezyan,L。等。 散射光的干涉测量光谱可以量化细分屈光 - 折射率波动的统计数据。 物理。 修订版 Lett。 (2013)。章节Google Scholar Li,Y。等。 纳米级染色质成像和分析平台桥梁4D染色质组织具有分子功能。 SCI。 adv。 Spectrochim。 acta pt a:mol。 A.81,32–37(2022)。插图广告Google Scholar Eid,A.,Winkelmann,J。A.,Eshein,A.,Taflove,A。&Backman,V。光学相干断层扫描中的五帧对比的起源。生物疾病。选择。Express 12,3630–3642(2021)。谷歌学者Cherkezyan,L。等。散射光的干涉测量光谱可以量化细分屈光 - 折射率波动的统计数据。物理。修订版Lett。 (2013)。章节Google Scholar Li,Y。等。 纳米级染色质成像和分析平台桥梁4D染色质组织具有分子功能。 SCI。 adv。 Spectrochim。 acta pt a:mol。 A.Lett。(2013)。章节Google Scholar Li,Y。等。纳米级染色质成像和分析平台桥梁4D染色质组织具有分子功能。SCI。 adv。 Spectrochim。 acta pt a:mol。 A.SCI。adv。Spectrochim。acta pt a:mol。A.7,EABE4310(2021)。插图广告Google Scholar Sun,G.,Fu,C.,Dong,M.,Jin,G。&Song,Q. 有限差分时间域(FDTD)指导在Ti底物上制备Ag纳米结构,用于敏感的SERS检测小分子。 生物分子光谱。 269,120743(2022)。元素Google Scholar Seo,J.-H.,Han,Y。 &Chung,J.-Y. 对超高场磁共振成像的鸟笼RF线圈构型的比较研究。 传感器22,1741(2022)。网站广告Google Scholar Taflove,A。 FDTD方法用于模拟不同材料和结构中的光的行为,例如硅在绝缘子光子光子晶体波导和金属纳米线阵列中。 Martin,R。M.(2004)电子结构:基本理论和实用方法。 剑桥大学。 按。 Sholl,D。S.和Steckel,J。 (2009)密度功能理论。 John Wiley&Sons,Ltd。Payne,M。C.,Teter,M。P.,Allan,D.C.,Arias,T。A.和Joannopoulos,J。D.(1992)迭代最小化技术的总计总计算:分子动力学和偶联梯度。 修订版 mod。 物理。 64,1045–1097。 Chew,W。C.,Liu,A。Y.,Salazar Lazaro,C。,&Sha,W。E.(2016)量子电磁学:新外观 - 一部分IEEE J. J. Multisc。 多人。 计算。 技术。 1,73–84。 Chew,W。C.,Liu,A。Y.,Salazar Lazaro,C。和Sha,W。E.(2016)量子电磁学:新外观 - 第二部分。 IEEE J. Multisc。 多人。 计算。 技术。 15。7,EABE4310(2021)。插图广告Google Scholar Sun,G.,Fu,C.,Dong,M.,Jin,G。&Song,Q.有限差分时间域(FDTD)指导在Ti底物上制备Ag纳米结构,用于敏感的SERS检测小分子。生物分子光谱。269,120743(2022)。元素Google Scholar Seo,J.-H.,Han,Y。&Chung,J.-Y.对超高场磁共振成像的鸟笼RF线圈构型的比较研究。传感器22,1741(2022)。网站广告Google Scholar Taflove,A。FDTD方法用于模拟不同材料和结构中的光的行为,例如硅在绝缘子光子光子晶体波导和金属纳米线阵列中。Martin,R。M.(2004)电子结构:基本理论和实用方法。剑桥大学。按。Sholl,D。S.和Steckel,J。(2009)密度功能理论。John Wiley&Sons,Ltd。Payne,M。C.,Teter,M。P.,Allan,D.C.,Arias,T。A.和Joannopoulos,J。D.(1992)迭代最小化技术的总计总计算:分子动力学和偶联梯度。修订版mod。物理。64,1045–1097。Chew,W。C.,Liu,A。Y.,Salazar Lazaro,C。,&Sha,W。E.(2016)量子电磁学:新外观 - 一部分IEEE J. J. Multisc。多人。计算。技术。1,73–84。Chew,W。C.,Liu,A。Y.,Salazar Lazaro,C。和Sha,W。E.(2016)量子电磁学:新外观 - 第二部分。IEEE J. Multisc。多人。计算。技术。15。&Brodwin设计和基于光子晶体的生物传感器的分析,以检测电磁波传播的不同血液成分模拟地面渗透雷达的电磁波传播,使用GPRMAX软件在倾斜和完全型电场沿浸入量的倾斜度范围内的ectriccentric LWD钻孔传感器的数值建模在浸入和完全各向异性的范围内实现的范围范围内的范围内的范围内的范围内的范围内的范围。在各向异性的地球 - 离子层波导中,使用FDTD方法减少了地球 - 离子层波导中FDTD方法的角度分散,用于在地球 - 离子层ldf无线电波中传播VLF-LF无线电波在地球 - iOn层波导中的vlf-iOn层fdtd传播中VLF-lf-lf的传播中VLF-LF的传播中的vlf-ion层传播模型3的vlf-ion层传播。在地球 - 离子层波导中的长距离VLF传播FDTD模型,用于低海拔和高空闪电产生的EM领域通过电离层等离子体的不规则进行高频波通过FDTD方法网格基于电网基于电网的,基于电磁波的时间域模型的电动磁性反射的电动层的动力学反射的电流模型的电流层模型的模型折射率为阴性指数的媒体中的折射文章讨论了使用有限差分时间域(FDTD)方法的使用来分析各种电磁现象,包括负屈光度指数分离和光子纳米夹。1,85–97。Fox,A。M.(2006)量子光学:简介。卷。牛津大学。按。Gerry,C.,Knight,P。和Knight,P。L.(2005)入门量子光学。剑桥大学。按。Miller,D。A.B.本文还提到了几篇应用FDTD方法研究各种主题的特定论文,包括: *负折射率 - 索引超材料(2004 IEEE MTT-S International Microwave研讨会消化) *光子纳米喷气机及其在光线范围内的光线范围及其在nanoparticles(nanoparticles for Nanoparticles(Optigs)的后范围(2004年)的增强, 2022) * Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements (Journal of Optical Society America, 1999) The article also discusses the use of FDTD to analyze other topics, such as: * Photonic band-gap structures (Microwave Optics Technology Letters, 2004) * Surface grating couplers (Laser Photonics Review, 2021) *在隔离器上硅光子晶体波导具有减少损耗(光学量子电子,2007年),该文章得出结论,FDTD方法是模拟和分析各种电磁现象的强大工具,并且已广泛地用于光孔和纳米技术领域。(2008)科学家和工程师的量子力学。剑桥大学出版社。na,D.-Y。和Chew,W。C.(2020)量子电磁有限差分时间域求解器。量子量表2,253–265。na,D.-Y.,Zhu,J。,&Chew,W。C.(2021)对有限大小的分散介质的对角线化:具有数值模式分解的规范量化。物理。修订版A 103,063707。na,D.-Y.,Zhu,J.,Chew,W。C.和Teixeira,F。L.(2020)量子信息保存计算电磁学。物理。修订版A 102,013711。Thiel,W.,Tornquist,K.,Reano,R。和Katehi,L。P. B.(2002)使用时域方法对RF-内蒙切换中的热效应进行了研究。在2002年IEEE MTT-S国际微波研讨会摘要(Cat。编号02CH37278)。alsunaidi,M。A.,Imtiaz,S.M。S.和El-Ghazaly,S.M。(1996)使用全波时间域模型对微波晶体管的电磁波影响。ieee trans。微量。理论技术。44,799–808。Grondin,R。O.,Elghazaly,S。M.,&Goodnick,S。A.(1999)对半导体和全波电磁学中电荷运输的全球建模综述。ieee trans。微量。理论技术。47,817–829。Piket-May,M。等。(2005)具有活性和非线性组件的高速电子电路。计算电动力学:有限差分时间域方法ch。15。sui,W.,Christensen,D。A.和Durney,C。H.(1992)将二维FDTD方法扩展到具有主动和被动的总元件的混合电磁系统。ieee trans。微量。理论技术。40,724–730。Decleer,P。和Vande Ginste,D。(2022)基于用于纳米线建模的ADHIE-FDTD方法的混合EM/QM框架。IEEE J. Multisc。多人。计算。技术。7,236–251。ieee trans。Geosci。 遥感 43,257–268。Geosci。遥感43,257–268。43,257–268。hue,Y.-K。,Teixeira,F。L.,Martin,L。S.和Bittar,M。S.(2005)通过浸入地层对钻孔中偏心LWD工具响应的三维模拟。Zhang,Y.,Simpson,J。J.,Welling,D。和Liemohn,M。(提高了麦克斯韦方程的效率FDTD模型用于太空天气应用)研究人员一直在努力提高用于电磁模拟中的数值方法的稳定性和准确性,尤其是有限端口 - 递观时间域(FDDDDDDDDDDDDDDDDDDDDDDDD)。各种研究已经探索了扩展FDTD稳定性极限的方法,包括使用空间滤波,自回旋模型和模式跟踪。其他研究重点是优化网格几何形状,插值方案和数字过滤,以提高准确性。此外,还有关于应用其他领域的技术(例如量子信息和金属镜)来改善FDTD模拟的研究。一些研究还探讨了麦克斯韦的方程和拓扑观点的使用在理解电磁现象中。此外,研究人员开发了用于敏感性分析,形状优化和自适应网状精炼的新方法。这些努力的目的是开发更准确,有效的数值方法,以模拟复杂的电磁系统,例如在等离子体模拟,电离层不规则和元图设计中发现的系统。在2007年出版物中探索了电磁学的数值方法。该研究结合了有限的差异时间域和矩技术的方法,以模拟与各种地面环境相互作用的复杂天线。单独的研究论文提出了一种混合方法,合并了射线追踪和FDTD方法,以准确模拟室内无线电波传播。另一项研究提供了使用统一框架对计算电磁学的全面概述。此外,在2008年出版物中讨论了光子晶体的概念,重点是控制光流。