丝状真菌表现出良好的经济价值,因为它具有生产各种活性天然化合物的能力。丝状真菌的遗传背景相对复杂,并且使用遗传工程来修饰丝状真菌相对较晚。基因敲除是修饰丝状真菌的重要方法之一。基因敲除技术可以阐明基因的功能,并有效阻断或削弱旁路代谢途径,从而将代谢通量集中到目标产物。本综述着重于丝状真菌的价值和研究进度,并介绍了用于丝状敲除基因敲除
摘要:丝状真菌因其在蛋白质分泌方面的熟练程度和出色的翻译后修饰能力,作为蛋白质生产细胞工厂展现出无与伦比的潜力。本综述概述了丝状真菌在不同世代的生物输入技术中的作用,并探讨了它们产生次级代谢产物的能力。我们的研究强调了丝状真菌在生物活性化合物生产中的领先地位,强调了阐明其代谢库的必要性。此外,我们深入研究了丝状真菌遗传转化的常见策略,阐明了每种技术的基本原理、优点和缺点。我们采取前瞻性的方法,探索基因组工程(特别是 CRISPR-Cas9 技术)作为促进丝状真菌蛋白质分泌的手段的前景。对这些真菌中蛋白质分泌途径的详细研究为其工业应用提供了见解。值得注意的是,科学界已开展了大量研究,重点研究了用于工业生产蛋白质和酶的曲霉菌和木霉菌。本综述还介绍了旨在增强丝状真菌酶分泌以用于各种工业应用的基因工程策略的实例。这些发现强调了丝状真菌作为蛋白质生产多功能平台的潜力,并强调了该领域未来研究和技术进步的途径。
菲洛巴氏菌(Filobasidium)属,是菲洛巴·西迪亚斯(Filoba Sidiales)的家族丝虫科的成员,是一组具有许多代表性物种的基本菌。迄今为止,已经在菲洛巴氏菌中描述并接受了14种。尽管最近发表了一些来自中国的新发现,但丝状岛的物种多样性仍未完全理解。样品,并检查了该属的物种多样性。三个新物种,即F. pseudomali sp。nov。 ,F。Castaneaesp。nov。和F. Qingyuanense sp。nov。基于内部转录间隔物(ITS)的系统发育分析以及大亚基(LSU)rRNA基因的D1/D2结构域以及其单独的序列与表型特征相连。提供了完整的描述,插图,与类似物种的比较以及系统发育分析。这项研究的发现实质上丰富了中国菲洛巴氏菌的生物多样性。
Anderson,J。C.(2017)。 对乙酰氨基酚,P-氨基苯酚和P-氨基苯甲酸的生物合成产生。 Behle,A.,Saake,P.,Germann,A。T.,Dienst,D。,&Axmann,I.M。(2020)。 比较剂量 - cy-细菌中诱导启动子的反应分析。 ACS合成生物学,9,843 - 855。 Berliner,A.J.,Hilzinger,J.M.,Abel,A.J.,McNulty,M.,Makrygiorgos,G.,Averesch,N.J.H.,Gupta,S.S.,S.S.,Benvenuti,A.,Caddell,D. Lipsky,I.,Mirkovic,M.,Meraz,J。,…A.P。(2020)。 朝着火星上的生物制造业。 天文学和太空科学的边界,8,1 - 20。 Blue,R。S.,Bayuse,T。M.,Daniels,V。R.,Wotring,V。E.,Suresh,R.,Mulcahy,R。A.,&Antonsen,E。L.(2019)。 为NASA勘探太空飞行提供药房:挑战和当前的不足。 NPJ微重力,5,14。Anderson,J。C.(2017)。对乙酰氨基酚,P-氨基苯酚和P-氨基苯甲酸的生物合成产生。Behle,A.,Saake,P.,Germann,A。T.,Dienst,D。,&Axmann,I.M。(2020)。比较剂量 - cy-细菌中诱导启动子的反应分析。ACS合成生物学,9,843 - 855。Berliner,A.J.,Hilzinger,J.M.,Abel,A.J.,McNulty,M.,Makrygiorgos,G.,Averesch,N.J.H.,Gupta,S.S.,S.S.,Benvenuti,A.,Caddell,D. Lipsky,I.,Mirkovic,M.,Meraz,J。,…A.P。(2020)。朝着火星上的生物制造业。天文学和太空科学的边界,8,1 - 20。Blue,R。S.,Bayuse,T。M.,Daniels,V。R.,Wotring,V。E.,Suresh,R.,Mulcahy,R。A.,&Antonsen,E。L.(2019)。为NASA勘探太空飞行提供药房:挑战和当前的不足。NPJ微重力,5,14。
少数寄生虫Mansonella Ozzardi和Mansonella Perstans,Mansonellelisois的病因,感染了全球数亿人,但仍然是人类官方病原体中最受研究所研究的人之一。M. Ozzardi在拉丁美洲国家和加勒比海群岛高度普遍,而M. Perstans主要在撒哈拉以南非洲以及南美的一些地区发现。除了其地理分布的差异外,这两个寄生虫还通过不同的昆虫载体传播,并且在其对常用的驱虫药物的反应上表现出差异。缺乏基因组信息阻碍了对Mansonella寄生虫的生物学和进化的研究,并了解物种之间临床差异的分子基础。在当前的研究中,报道了喀麦隆的两个独立临床分离株的高质量基因组和两个来自巴西的ozzardi分离株,另一个是委内瑞拉的。基因组的大小约为76 MB,每个基因编码约10,000个基因,并且基于BUSCO评分约为90%,与其他完整的基因组相似。这些序列代表了Mansonella寄生虫的第一个基因组,并实现了对Mansonella和其他细胞寄生虫之间相似性和差异的比较基因组分析。水平DNA转移(HDT)从线粒体(NUMTS)以及从内共生菌群沃尔巴氏菌(NUWT)转移到宿主核基因组的转移并进行了分析。序列比较抗合性药物的已知靶标二乙基钙化靶标(DEC),伊维沙素和梅本唑的序列发育分析表明,除GON-2基因编码的DEC靶标外,所有已知的靶基因均存在于GON-2基因中,而GON-2基因编码了GON-2基因,该基因在基因组中均来自M. ozzardi Inlecties。 这些新的参考基因组序列将为生物学,共生,进化和药物发现的进一步研究提供宝贵的资源。序列发育分析表明,除GON-2基因编码的DEC靶标外,所有已知的靶基因均存在于GON-2基因中,而GON-2基因编码了GON-2基因,该基因在基因组中均来自M. ozzardi Inlecties。这些新的参考基因组序列将为生物学,共生,进化和药物发现的进一步研究提供宝贵的资源。
细菌 MCC 的原子结构已通过 X 射线晶体学使用在大肠杆菌中表达的带有 His 标签的重组铜绿假单胞菌 MCC (PaMCC rec) 进行解析。22 。PaMCC rec 亚基寡聚化为十二聚体复合物,其核心由六个 β 亚基组成,中间夹着两个 α 三聚体,形成 α 6 β 6 结构 22 。MCC 是否可能以其他形式存在尚不清楚。尽管如此,它们的超分子组装是根据负染色电子显微镜观察到的无色杆菌 IVS MCC 的杆状聚集体推测的 23 。低温电子显微镜 (cryoEM) 的最新进展揭示了意想不到的酶聚合模式,并阐明了此类结构形式的调控作用 24–29 。例如,高分辨率低温电子显微镜结构阐明了几种真核 ACC 30 丝状形式的调控功能。由于缺乏天然 MCC 酶的高分辨率结构,天然 MCC 是否能类似地形成超分子组装体仍未确定。
摘要 FANCI:FANCD2 单泛素化是范可尼贫血 (FA) DNA 修复途径稳定复制叉的关键事件。有人提出,在停滞的复制叉中,单泛素化的 FANCD2 可募集含有泛素结合基序的 DNA 修复蛋白。在这里,我们在体外重建了 FA 途径,以研究 FANCI:FANCD2 单泛素化的功能后果。我们报告称,单泛素化不会促进任何特定的外源蛋白质:蛋白质相互作用,而是稳定 dsDNA 上的 FANCI:FANCD2 异二聚体。这种夹紧只需要 FANCD2 亚基的单泛素化。我们进一步使用电子显微镜显示纯化的单泛素化 FANCI:FANCD2 在长 dsDNA 上形成丝状阵列。我们的研究结果揭示了单泛素化的 FANCI:FANCD2(在许多癌症类型和所有 FA 病例中存在缺陷)如何在 DNA 结合时被激活。
基于免疫学终点的有效性推断,将免疫学结果与已知功效情况下的新疫苗/制剂/亚群的免疫学结果进行比较。成功标准应考虑新疫苗/制剂/亚群相对于比较物的期望相对功效。这意味着免疫学终点(最常见的是结合或中和抗体)将预测免疫反应的其他重要组成部分。由于进行了比较,因此不一定需要截止值。
通过利用其强大的代谢多功能性,丝状真菌可用于旨在实现循环经济的生物过程。随着生物制造业领域的数字化转型,人们对基于真菌的系统自动化的兴趣日益浓厚。因此,本文的目的是回顾与基于真菌的系统中应用自动化和人工智能相关的潜力。自动化的特点是用机械化工具代替手动任务。另一方面,人工智能是计算机科学的一个领域,旨在设计能够执行通常需要人类能力的功能的工具和机器。流程灵活性、增强的数据可靠性和提高的生产率是将自动化和人工智能集成到基于真菌的生物过程中的一些好处。需要进一步研究的现有差距之一是将这种基于数据的技术用于用真菌生产食品。
席尔瓦,费利佩。s586d在真菌真菌cr菌中的CRISPR / cas9系统的开发用于转录因子的表达XLNR和ARAR的表达,以及(Hemi-)纤维素酶 / Felipe Silva的过量生产;顾问DanielGonçalves。- Divinópolis,2024。