摘要本文强调了诸如厚膜丝网印刷,墨水射流和后发射薄膜工艺等技术的可能组合,并结合激光滴定的细vias,以产生高密度的微型LTCC底物。为了获得内层的银色图案,在陶瓷绿色的床单上应用了常规的厚膜印刷和墨水喷射印刷(使用纳米银颗粒分散墨水)。墨水喷气工艺使用线/空间= 30/30 m m的细线进行金属线。对于层间连接,使用了由紫外线激光形成的直径30 m m的细vias。然后将这些床单彼此堆叠并发射以获得基础。在此基底物上,通过薄膜过程形成了用于翻转芯片的细铜图案。表面表面均由镍钝化和通过电板沉积的金层。用于进行迹线的三个图案操作和细vias的紫外线激光钻孔的组合使得实现精细的螺距LTCC,例如,用于Flip Chip设备安装。
Div> CV。Makassar t衬衫商店成立于2013年,这是从事丝网印刷服务的IKM之一,在该服务中,原材料以T衬衫的形式出现。此时在中小型企业上出现的问题是对IKM所有者仍难以满足和解决的定制产品的需求。使用业务模型帆布(BMC)开发印刷业务的研究目标。所使用的研究类型是定性研究,研究结果表明,要开发简历印刷业务。Makassar t衬衫商店必须通过与社区一起增加客户细分,通过生产自己的生产材料,将渠道添加到网站,带有对流机器的关键活动以及额外的对流生产和对流机器维护成本的额外费用来完成价值比例。基于SWOT分析的结果,获得了外部和内部因素,即优点,劣势,机会和威胁。必须执行的业务开发设计是将自己的纯衬衫转换为丝网印刷。
晶体硅 • 多晶硅生产 • 硅锭和硅片:直拉法 (Cz)、定向凝固 (DS)、无切口技术,可生产 Cz 和 DS 等效物 • 电池转换:通过丝网印刷、电镀和无主栅技术生产单面和双面 PERC、PERT、HJT 和 IBC • 模块组装:标准接线和串接、无主栅和叠瓦
电子异质结构的微图案化主要依赖于洁净室环境中的传统微加工技术,其多个步骤涉及电子材料的旋涂以及光刻和蚀刻步骤。 3 该技术耗时且昂贵,并且蚀刻步骤对于某些有机导体来说是决定性的。蚀刻剂和抗蚀剂的残留物也会影响生物相容性。此外,很难在任意基板(例如柔性材料)上进行光刻。另一种不涉及微加工的技术是印刷,例如喷墨 4 或丝网印刷。 5 对于丝网印刷,必须为网格开发具有特殊流变性质的油墨。在喷墨打印头中,胶体颗粒的油墨经常会堵塞喷嘴。更成问题的是,很难使用任何加法印刷方法制造具有多种材料堆叠的复杂几何形状,因为添加来自水的油墨会溶解并改变之前的层。 3D 可打印 PEDOT:PSS 墨水已开发用于与其他非导电可打印材料结合形成复杂几何图形,但这些过程依赖于耗时的机制,例如低温冷冻、冻干和干退火。6
太阳能电池市场由硅光伏电池主导,约占整个市场的 92%。硅太阳能电池制造工艺涉及几个关键步骤,这些步骤在很大程度上影响电池效率。这包括表面纹理化、扩散、抗反射涂层和接触金属化。在关键工艺中,金属化更为重要。通过优化接触金属化,可以减少或控制太阳能电池的电和光损耗。本文简要讨论了传统和先进的硅太阳能电池工艺。随后,详细回顾了传统硅太阳能电池中用于前接触的不同金属化技术,例如丝网印刷和镀镍/镀铜。背面金属化对于提高钝化发射极背接触电池和交错背接触电池的效率非常重要。本文回顾了钝化发射极背接触 (PERC) 电池中局部 Al 接触形成的当前模型,并讨论了工艺参数对局部 Al 接触形成的影响。此外,本文还简要回顾了交错背接触 (IBC) 电池中的接触机制和金属接触的影响。对传统丝网印刷太阳能电池的金属化研究重点与 PERC 和 IBC 电池进行了比较。
创新点包括材料的组成、制备方法以及一种用于增强天线性能的丝网印刷柔性贴片天线的制备方法,其中含有铁氧体厚膜。事实证明,通过在基板和导电贴片之间添加铁氧体厚膜,铁氧体厚膜的介电和磁性可以增强天线的功率损耗和带宽,这对天线性能至关重要。该创新还独立于贴片天线的设计,让客户可以自由使用自己的定制设计/系统。
在微电子领域,设备集成度更高、散热性能更好一直是个趋势。在制造基于陶瓷的微电子器件时,可以应用以下技术。厚膜混合技术使用烧结陶瓷基板(主要是 Al 2 O 3 ),用功能糊料进行丝网印刷,然后在 850°C 下烧制。氧化铝基板具有非常好的导热性(25 W/mK),但是只有两侧可以进行金属化。使用 LTCC 技术的多层系统可以实现更好的小型化。LTCC 器件通过丝网印刷、堆叠和层压陶瓷绿带,然后进行共烧来制造。LTCC 的缺点是由于其玻璃含量高而导致的低导热性(3 W/mK)。通过结合混合技术和 LTCC 技术,可以结合两种方法的优点,例如良好的导热性和高的多层集成度。由于通过热压将生带层压在烧结陶瓷基板上的故障率太高,因此冷低压层压 (CLPL) 已被用作替代层压工艺。CLPL 是一种层压方法,其中组件的连接是在室温下通过使用双面胶带施加非常低的压力 (<5 MPa) 进行的。在热处理过程中,粘合膜将胶带保持在一起,直到粘合剂完全分解;在进一步升温期间,胶带通过烧结连接在一起。本文介绍了将烧结材料与生带连接所使用的材料和加工步骤,并讨论了烧制过程中发生的影响。这些影响(如边缘卷曲和裂纹形成)主要是由于在受限烧结过程中发生的应力造成的。可以通过改变工艺参数来影响它们的控制。关键词:连接、层压、冷低压层压、LTCC、氧化铝基板
电子和微电子在人们的生活中发挥着巨大的作用。笔记本电脑、手机和智能手表每天都陪伴着我们。科学和工业界做出了巨大的努力,使电子产品适应新的形状[1、2]和基底,使其功能更加强大。这种集成的主要方向之一是纺织集成电子产品(电子纺织品、可穿戴设备)[3]。这类电子产品必须保留传统电子系统的功能,同时满足新的、不寻常的要求,包括灵活性和可扩展性[4-6]。电子纺织品已经在医学[7]、体育[3]甚至日常使用[8]中进行了测试。生产纺织集成电子设备的潜在可能性之一是印刷电子方法,特别是喷墨[9]或丝网印刷[10]技术。利用这些技术,可以直接在织物或聚合物涂层织物上 [13] 打印电子元件,如电极 [11]、传感器 [12]、电互连线等。此外,已有报道将纺织品和电子元件与各向异性导电膜 ACF 相结合以实现电子纺织品 [14]。[15] 展示了纺织品上可清洗的丝网印刷天线。值得注意的是在纺织品上展示的喷墨打印石墨烯-银复合墨水 [16]。最后,用于可穿戴健康监测设备的纺织品上可清洗的石墨烯基印刷电极有望带来潜在的应用 [17]。上述文章的作者提到了需要克服的主要问题,即层的开裂和分层。迄今为止,尚未报道可清洗的接头。尽管文献中已经报道了各种印刷可拉伸电子设备,但仍有各种问题尚未解决 [18-20]。一个重要的
专门为电子组件组件设计;多层焊剂是无铅的,没有干净且环保的导电胶。量身定制的流变学允许多种应用方法,包括丝网印刷,模板打印或分配。多层焊剂通过IR,会议或盒子烤箱设备中的热处理键合。能够以大量应力吸收特性实现低温处理和快速键合。Polystolder是一种独特的填充银聚合物矩阵,即使经过广泛的环境老化,也会形成具有标准组件和基板的稳定电气和机械连接。