摘要:聚合物胶束是具有核壳结构的两亲聚合物的纳米级组装体,已被用作各种治疗化合物的载体。它们因具有溶解难溶性药物的能力、生物相容性以及通过增强渗透性和保留性 (EPR) 在肿瘤中积累的能力等特殊性质而受到关注。此外,可以通过进一步改性为胶束提供额外的功能。例如,使用靶向配体对胶束表面进行改性可以实现特定靶向和增强肿瘤积累。刺激敏感基团的引入导致药物响应环境变化而释放。本综述重点介绍了多功能聚合物胶束在癌症治疗领域的发展进展。本综述还将介绍一些用于肿瘤成像和治疗诊断的多功能聚合物胶束的例子。
天然牙釉蛋白及其超分子组装体已被直接应用并实现了羟基磷灰石层的有效再生[9,10]。其他系统,例如自组装阴离子肽、肽两亲物、含有磷酸根和氟离子的富含甘油的明胶凝胶以及谷氨酸和纳米磷灰石颗粒的组合,均已被报道可模拟生物矿化过程并再生牙釉质状羟基磷灰石。然而,由于天然蛋白质的提取/纯化/储存困难,或存在氟离子的过度使用和复杂的多步骤策略,它们在临床应用中的进一步应用受到限制。因此,有必要开发一种简单的策略来模拟牙釉蛋白的功能以诱导缺损牙釉质表面的再矿化[11-13]。
聚合物是各种生物材料,通常应用于抗癌和抗菌剂的组织工程和载体中。有多种化学,生物学,医学和工业应用,用于聚乙烯乙二醇(PEG),一种水溶性聚醚。由PEG组成的聚合药物输送系统由于免疫原性,生物降解性,活性药物靶向和可持续的药物释放特征而具有许多优势。此外,该聚合物已成功地用于为各个身体部位的组织工程制备三维(3D)支架。是增加生物相容性和全身循环时间的关键步骤。此外,刺激性反应性和两亲性药物结合物基于PEG作为自组装的配方,例如胶束增强了细胞内药物的释放。在这篇综述中,我们试图提出并讨论与PEG在抗菌药物携带者和组织工程中的新应用相关的最新进展和挑战。
金属配位导向大环复合物,其中大环结构由金属-配体配位相互作用形成,已成为一种有吸引力的超分子支架,可用于创建生物传感和治疗应用材料。尽管最近取得了进展,但不受控制的多环笼和线性低聚物/聚合物是最有可能的金属配体组装产物,这对当前的合成方法提出了挑战。本文我们概述了使用可折叠配体或通过组装两亲配体合成金属配位导向大环复合物的最新合成方法。这篇小综述为高效制备具有可预测和可控结构的金属配位导向大环复合物提供了指导,这些复合物可在许多与生物相关的领域得到应用。
聚合物囊泡和脂质纳米颗粒是具有相似物理化学特性的超分子结构,它们是从不同的两亲分子中自组装的。由于其有效的药物封装可容纳,它们是药物输送系统的良好候选者。近年来,具有不同组合物,大小和形态的纳米颗粒已应用于多种不同疗法分子(例如核酸,蛋白质和酶)的递送。它们的显着化学多功能性允许对特定的生物应用进行定制。在这篇综述中,总结了与代表性的示例,以其物理化学特性(尺寸,形状和机械特征),准备策略(胶片再输入,节能,溶剂切换和纳米式)以及对诊断的挑战和应用程序(Image corneption,Image),对诊断的设计方法总结了代表性的示例(尺寸,形状和机械特征),并涉及临床。讨论了从实验室到临床应用和未来观点的过渡。
生物表面活性剂是表面活性剂,面临活性乳液,可降低两种液体之间或液体之间的界面压力。表面活性剂是有机乳液,既包含疏水(表面活性剂的头部)和亲水性(表面活性剂的尾部)的一半。因此,表面活性剂含有两种水不足,即驱虫群和可响应的水组,即热爱水组。生物表面活性剂也会像化学表面活性剂一样面临活跃的乳液,但与化学表面活性剂不同,生物表面活性剂是由细菌,真菌和激励剂等微生物合成的。生物表面活性剂是属于包括糖脂,脂肪肽,脂肪肽,脂肪酸盐的各种类别的有机化合物,磷酸化,磷酸化,磷酸化,磷酸化。生物表面活性剂包括掉落面部压力的包裹,稳定混合物,促进愤怒,通常是无毒的,可生物降解的。BIO乳化剂是两亲构的聚合物,而生物性聚合物面临的活性化学物质,而活性化学物质是由大量细菌,激发和fungi产生的。
ashwinishinde2408@gmail.com摘要:niosome是在合成非离子表面活性剂水合下获得的非离子表面活性剂囊泡,没有或不掺入胆固醇或脂质。它们是类似于脂质体类似的囊泡系统,可以用作两亲和亲脂性药物的载体。niosome似乎是一种优先的药物输送系统,而不是脂质体,因为Niosome稳定且经济。还具有较大的药物输送潜力,可靶向抗癌,抗感染剂。niosomes可能会诱发亲水性和亲脂性药物,并可以延长夹杂药在体内的循环。可以预测,可以预测药物在囊泡系统中的封装可以延长全身循环中的药物存在,并增强渗透到靶组织中,如果可以实现选择性摄取,则可能会降低毒性。本综述文章重点介绍了噪声组的优点,缺点,准备方法,影响因素,影响力,作用机理和应用。关键字:niosomes,胆固醇,非离子表面活性剂,两亲量,药物载体,类型,制备方法,表征,优势,应用
有效治疗胶质母细胞瘤仍然是一项艰巨的挑战。治疗药物开发的主要障碍之一是它们无法穿过血脑肿瘤屏障 (BBTB)。局部给药是一种替代方法,但在缺乏靶标选择性的情况下仍可能产生毒性。在这里,我们展示了由 ssDNA 两亲分子自组装形成的纳米管在血清和核酸酶中是稳定的。双侧脑注射后,纳米管在肿瘤中比在正常脑中更易保留,并通过清道夫受体结合和巨胞饮作用被胶质母细胞瘤细胞吸收。静脉注射后,它们穿过 BBTB 并内化到胶质母细胞瘤细胞中。在微小残留疾病模型中,局部给药阿霉素在脾脏和肝脏中显示出毒性迹象。相反,通过纳米管输送阿霉素不会引起全身毒性,并提高小鼠的存活率。我们的结果表明,ssDNA 纳米管是一种很有前途的胶质母细胞瘤药物输送载体。
2指南,Nirant药房Boramani Solapur摘要聚合物胶束提出了一种可行的药物输送和靶向研究方法。与表面活性剂胶束相比,聚合物胶束是纳米级胶体颗粒,它们是从两亲性块共聚物中自组装的。它们的内核具有溶解大量疏水物质的能力。本文介绍了有关聚合胶束的许多主题,包括其基本原理,其中包括其大小,形状,化学,一般特征,结构分析和生产机制。也强调了多种聚合物胶束。在这里,我们特别关注了在多种应用中使用聚合物胶束作为纳米载体的最新进步,包括治疗癌症,治疗Covid-19,口服药物递送,皮肤药物递送,多核苷酸分布以及向大脑递送。聚合物胶束作为药物输送和有针对性应用的研究工具表现出巨大的希望。两亲性块共聚合物自组装以形成自组装的纳米级胶体颗粒,称为聚合物胶束。聚合物胶束由于其特殊的生物相容性,毒性很少,血液循环持续时间的延长以及能够在其胶束核心内溶解大量药物的能力,因此发现了广泛的应用。根据分子间力,聚合物胶束分为常规,Polyion复合物,并非共价连接。本文中解释了三种类型的准备方法。他们直接溶解,溶剂蒸发和透析法。这里使用的评估技术是关键的胶束浓度,大小和形状,体外药物释放行为。聚合物胶束可以用作向某些位置输送的药物,可以通过使用聚合物胶束来实现。关键字:块共聚物,溶解,聚合物胶束和胶束,药物输送,聚合物和纳米载体。引言称为聚合物胶束的自组装纳米颗粒由两亲性块聚合物组成,它们同时是亲水和疏水性块聚合物。与常规两亲物相似,两亲块聚合物还在临界分子浓度(CMC)上方的水溶液中产生聚合物胶束[1]。聚合物胶束与常规表面活性剂单体胶束相比,在疏水性核心内的单个表面活性剂分子之间形成了共价连接。此链接阻止了胶束伪相和自由解之间单体的动态交换。这证实了聚合物胶束的稳定性和刚度。该聚合物胶束中颗粒的大小为10-10 nm,比磷脂囊泡小。[2]聚合物胶束的尺寸受两亲性块共聚物的分子量,两亲和的聚集数以及亲水性和
CRISPR 介导的原代人类淋巴细胞基因组编辑通常通过电穿孔进行,这可能具有细胞毒性、繁琐且成本高昂。本文我们展示了通过递送与筛选确定的两亲肽混合的 CRISPR 核糖核蛋白可以大幅提高编辑后的原代人类淋巴细胞的产量。我们通过递送 Cas9 或 Cas12a 核糖核蛋白或腺嘌呤碱基编辑器敲除 T 细胞、B 细胞和自然杀伤细胞中的基因来评估这种简单递送方法的性能。我们还展示了肽介导的核糖核蛋白递送与腺相关病毒介导的同源定向修复模板配对可以在 T 细胞受体 α 恒定位点引入嵌合抗原受体基因,并且工程细胞在小鼠中表现出抗肿瘤效力。该方法干扰最小,不需要专用硬件,并且与通过顺序递送的多重编辑兼容,从而最大限度地降低了基因毒性的风险。肽介导的核糖核蛋白细胞内递送可能有助于制造工程化 T 细胞。