Karami,M.,Hossain,M.,Ojala,A。,&Mehrara,N。(2024)。 小型公司在不确定环境中共同创造机会的资源动员和技术采用。 营销和企业家研究杂志。 https://doi.org/10.1108/jrme-10-2023-0167Karami,M.,Hossain,M.,Ojala,A。,&Mehrara,N。(2024)。小型公司在不确定环境中共同创造机会的资源动员和技术采用。营销和企业家研究杂志。https://doi.org/10.1108/jrme-10-2023-0167https://doi.org/10.1108/jrme-10-2023-0167
本届政府强烈反对 HR 1398 法案,即“2024 年保护美国创新和经济安全免受中共侵害法案”,该法案将在司法部 (DOJ) 内部设立“中共倡议”,该实体类似于司法部于 2022 年基于严重的国家安全担忧而解散的“中国倡议”。本届政府致力于通过对美国创新进行历史性投资、实施出口管制以打击不公平贸易行为以及保护知识产权来赢得 21 世纪对中国的经济竞争。本届政府一直致力于打击商业机密盗窃、黑客攻击和经济间谍活动带来的威胁,包括与中华人民共和国有关联的行为者。但按照该立法设想的方式对案件进行分组将削弱司法部调查和起诉此类犯罪活动的能力,包括使司法部更难获得受害者和证人的合作。该法案还可能使公众产生错误且有害的印象,认为司法部对调查和起诉与中国人或华裔美国公民有关的犯罪行为采用了不同的标准。政府将继续与美国企业、民间社会和高等教育机构合作,而不是反对他们,以保护他们免受商业机密盗窃、黑客攻击和经济间谍活动的侵害。因此,政府强烈反对这项立法,因为它会损害这些重要努力。
参量振子的量子动力学越来越受到理论和实验界的关注 [1-16]。在一定程度上,这种兴趣来自于参量振子的新应用,特别是在量子信息领域的应用。在更广泛的背景下,此类振子为研究远离热平衡的量子动力学和揭示其迄今未知的方面提供了一个多功能平台,隧穿新特征和新的集体现象就是例子。动力学特征之一是多态量子系统中详细平衡的出现和特征,这也是本文的动机之一。在很大程度上,参量振子的重要性在于其对称性。此类振子是具有周期性调制参数(如特征频率)的振动系统,其振动频率为调制频率 ω p 的一半。经典上,振动态具有相等的振幅和相反的相位 [17],这是周期倍增的一个基本例子。量子力学上,振动态可被认为是符号相反的广义相干态 [18]。弗洛凯本征态是频率为 ω p / 2 的振动态的对称和反对称组合。一般来说,在量子信息中使用参量振子需要进行破坏其对称性的操作,参见文献 [19]。对称性破坏可以通过在频率为 ω p / 2 处施加额外的力来实现。从经典角度来看,这种力的作用可以从图 1(a) 中理解。由于振动态具有相反的相位,因此力可以与两个状态中的其中一个同相,从而增加其
非线性介电元面积提供了一种有希望的方法来控制和操纵纳米级的频率转换过程,从而促进了基础研究的进步以及在光子学,激光和感应中的新实践应用的发展。在这里,我们采用了由中心的非定形硅制成的对称性交叉的元面积,以共同增强二阶和三阶非线性光学响应。在连续和引导模式的共振中利用光学准结合状态的丰富物理学,我们通过严格的数值计算全面研究表面和批量效应对第二谐波产生(SHG)的相对贡献,以及对来自meta-atoms的第三谐波发电(THG)的大量贡献。接下来,我们在实验上实现了具有高质量因素的特殊共振,这极大地增强了光 - 互动,导致SHG增强量约550倍,THG增加了近5000倍。观察到理论预测与实验测量之间的良好一致性。为了对所研究的非线性光学过程的物理学进行更深入的见解,我们进一步研究了非线性发射与跨表面的结构不对称之间的关系,并揭示了由线性敏锐的共振产生的产生的谐波信号非常依赖于元元素的非元元素。我们的工作提出了一项富有成果的策略,以增强谐波产生并有效地控制全dielectric Metasurfaces的不同顺序谐波,从而能够发展有效的有效的主动光子Nan-osevices。
非线性介电元面积提供了一种有希望的方法来控制和操纵纳米级的频率转换过程,从而促进了基础研究的进步以及在光子学,启动和感应中的新实践应用的发展。在这里,我们采用了由中心的非定形硅制成的对称性交叉的元面积,以共同增强二阶和三阶非线性光学响应。在连续和引导模式的共振中利用光学准结合状态的丰富物理学,我们通过严格的数值计算全面研究表面和批量效应对第二谐波产生(SHG)的相对贡献,以及对来自meta-atoms的第三谐波发电(THG)的大量贡献。接下来,我们在实验上实现了具有高质量因素的光学共振,这极大地增强了轻度相互作用,导致SHG增强功能约为550倍,THG增加了近5000倍。观察到理论预测与实验测量之间的良好一致性。为了对所研究的非线性光学过程的物理学进行更深入的见解,我们进一步研究了非线性发射与跨表面的结构不对称之间的关系,并揭示了由线性敏锐的共振产生的产生的谐波信号非常依赖于元元素的非元元素。我们的工作提出了一项富有成果的策略,以增强谐波产生并有效地控制全dielectric Metasurfaces的不同顺序谐波,从而能够发展有效的有效的主动光子Nan-osevices。
有效的编码方法提出,神经系统代表与生物学约束所允许的一样多的感官信息。它旨在将编码形式化为有限的最佳过程。旨在正式化解码的一种不同的方法,提出神经系统实例化了感官世界的生成模型。在这里,我们提出了一个规范性框架,该框架将神经系统表征为共同优化编码和解码。它采用变分自动编码器的形式:感觉刺激是在柔性解码器解释的神经元的嘈杂活性中编码的;编码必须允许通过神经活动进行准确的刺激重建。共同需要神经活动来表示被解码器映射到感官刺激分布的潜在特征的统计。解码相应地优化了生成模型的准确性。该框架在编码模型的家族中产生,从而导致同样准确的生成模型,这是通过刺激引起的神经活动偏离神经活性的边际分布的偏差的索引。该家族的每个成员都预测了感觉神经元的性质之间的特定关系,例如调音曲线平均值(首选刺激)和种群中宽度(选择性程度)的布置,这是感官世界统计数据的函数。我们的方法因此概括了有效的编码方法。值得注意的是,在这里,优化的约束形式源自准确的生成模型的要求,而在有效的编码模型中它是任意的。此外,解决方案不需要刺激分布的知识,而是根据数据样本学习的;该约束进一步充当正规器,使模型可以超出培训数据。最后,我们表征了通过替代性能度量获得的模型家族,例如刺激重建中的误差。我们发现一系列模型可以接受可比的性能。特别是,具有广泛调整曲线的感觉神经元的群体在实验上均产生低重建刺激误差和准确的生成模型,该模型可以强大地概括地看不见数据。
ISDA 衍生品未来领袖发布生成性人工智能白皮书 东京,2024 年 4 月 18 日——国际掉期和衍生品协会 (ISDA) 今天发布了 ISDA 衍生品未来领袖 (IFLD) 的白皮书,这是其针对衍生品市场新兴领袖的专业发展计划。白皮书《衍生品市场中的 GenAI:未来视角》由第三批 IFLD 参与者制定,他们于 2023 年 10 月开始合作。该小组的 38 名成员代表来自世界各地的买方和卖方机构、律师事务所和服务提供商。在被选中参加 IFLD 计划后,他们被要求与利益相关者接触,发展立场并制作一份关于生成性人工智能 (genAI) 在场外衍生品市场中潜在用途的白皮书。参与者还可以使用 ISDA 的培训材料、资源和员工专业知识,以支持该项目和他们自己的专业发展。白皮书借鉴行业专业知识和学术研究,确定了衍生品市场中 genAI 的一系列潜在用例,包括文档创建、市场洞察和风险分析。它还探讨了主要司法管辖区的监管问题,并解决了使用 genAI 所带来的挑战和风险。本文最后提出了一系列针对利益相关者的建议。这些建议包括投资人才发展、促进与技术提供商的合作和知识共享、优先考虑道德 AI 原则以及与政策制定者合作以促进适当的监管框架。ISDA 首席执行官 Scott O'Malia 表示:“人工智能的快速发展引起了金融市场和整个社会的广泛关注。随着技术的进步,genAI 有很大机会支持衍生品市场更高效、数据驱动的决策,但我们需要谨慎对待,确保正确处理该技术的影响和风险。在考虑未来的机遇和挑战时,需要新的视角,因此我赞扬 IFLD 完成这份文件,它为这个快速发展的话题做出了宝贵贡献。” “今年的 IFLD 小组来自不同的机构和司法管辖区,我们在过去六个月中共同探索 genAI 在全球衍生品市场的发展。很明显,这项技术有可能为多个行业流程增加重大价值。我们希望这份报告能够帮助市场参与者、政策制定者和其他利益相关者利用这项技术并应对相关挑战,”IFLD 参与者、瑞穗交易对手投资组合管理部门总监 Takuya Otani 表示。
SAV系统的动态性质也很重要。例如,时间需求的浓度可能会给乘客带来较长的等待时间,并且系统管理员必须通过为乘客的费用充电或提供激励措施来为其提供措施,或者提供激励措施,以提高系统的性能(就像当前的乘车系统一样(Yang等人。,2020))。为了找到这种措施的最佳解决方案,需要对SAV系统进行动态分析。然而,据作者的知识而言,对此问题的数学可触犯分析非常有限。现有关于SAV系统动态操作管理的研究采用了复杂的方法,例如深厚的增强学习(Xie等人,2023),贝叶斯优化(Liu等人,2024),非平衡模型(Ramezani&Valad-Khani,2023)。它们对于特定情况的最佳解决方案非常有用,但是它们可能不方便地发现一般的理论意义。
cnidarians和光合藻类之间的相互共生性是由宿主免疫和环境条件之间的复杂相互作用调节的。在这里,我们研究了共生如何与食物限制相互作用,以影响pallida海葵的基因表达和压力反应编程(Aiptasia)。对饥饿的转录组反应在共生和蛋白酶的动脉症之间相似。然而,凋亡的海葵反应更强。饥饿的两种共生状态的AIPTASIA均表现出蛋白质与免疫相关转录因子NF-κB的蛋白水平增加,其相关基因途径和推定的靶基因。然而,这种饥饿诱导的NF-κB的增加与仅在共生海葵中的免疫力相关。此外,饥饿对病原体和氧化应激挑战的敏感性具有相反的影响,这表明在粮食条件下稀缺的情况下有明显的能量优先级。最后,当我们比较了AIPTASIA中的饥饿反应与辅助珊瑚和非亲生海葵的饥饿反应时,“防御”反应在AIPTASIA和兼性珊瑚中类似地受到调节,但没有在非亲生血管疾病中进行调节。这种模式表明共生能力会影响Cnidarians的免疫反应。总而言之,某些免疫途径的表达(包括NF-κB)并不一定能预测对病原体的易感性,突出了Cnidarian免疫的复杂性以及在各种能量的需求下的共生影响。