Loading...
机构名称:
¥ 4.0

有效的编码方法提出,神经系统代表与生物学约束所允许的一样多的感官信息。它旨在将编码形式化为有限的最佳过程。旨在正式化解码的一种不同的方法,提出神经系统实例化了感官世界的生成模型。在这里,我们提出了一个规范性框架,该框架将神经系统表征为共同优化编码和解码。它采用变分自动编码器的形式:感觉刺激是在柔性解码器解释的神经元的嘈杂活性中编码的;编码必须允许通过神经活动进行准确的刺激重建。共同需要神经活动来表示被解码器映射到感官刺激分布的潜在特征的统计。解码相应地优化了生成模型的准确性。该框架在编码模型的家族中产生,从而导致同样准确的生成模型,这是通过刺激引起的神经活动偏离神经活性的边际分布的偏差的索引。该家族的每个成员都预测了感觉神经元的性质之间的特定关系,例如调音曲线平均值(首选刺激)和种群中宽度(选择性程度)的布置,这是感官世界统计数据的函数。我们的方法因此概括了有效的编码方法。值得注意的是,在这里,优化的约束形式源自准确的生成模型的要求,而在有效的编码模型中它是任意的。此外,解决方案不需要刺激分布的知识,而是根据数据样本学习的;该约束进一步充当正规器,使模型可以超出培训数据。最后,我们表征了通过替代性能度量获得的模型家族,例如刺激重建中的误差。我们发现一系列模型可以接受可比的性能。特别是,具有广泛调整曲线的感觉神经元的群体在实验上均产生低重建刺激误差和准确的生成模型,该模型可以强大地概括地看不见数据。

在神经种群中共同有效编码和解码

在神经种群中共同有效编码和解码PDF文件第1页

在神经种群中共同有效编码和解码PDF文件第2页

在神经种群中共同有效编码和解码PDF文件第3页

在神经种群中共同有效编码和解码PDF文件第4页

在神经种群中共同有效编码和解码PDF文件第5页

相关文件推荐