脑机接口 (BCI) 的解码器假设神经活动受到约束,这些约束既能反映科学信念,又能产生易于处理的计算。我们记录了低缠结(运动皮层神经轨迹的典型特性)如何产生不寻常的神经几何形状。我们设计了一个解码器 13 MINT,以接受这些几何形状的适当统计约束。MINT 采用以轨迹为中心的 14 方法:神经轨迹库(而不是一组神经维度)提供了一个近似神经流形的支架 15。每个神经轨迹都有相应的行为轨迹 16,允许简单但高度非线性的解码。MINT 的表现优于其他可解释方法 17,并且在 42 次比较中的 37 次中优于表达性机器学习方法。然而与这些方法 18 不同,MINT 的约束是已知的,而不是优化解码器输出的隐式结果。 MINT 在各项任务中表现良好,表明其假设通常与神经数据的统计数据非常吻合。尽管 20 包含行为与潜在复杂神经轨迹之间的高度非线性关系,21 MINT 的计算简单、可扩展,并提供可解释的数量,例如数据可能性。22 MINT 的性能和简单性表明它可能是临床 BCI 应用的绝佳候选者。23
主要关键词