在机场环境中,没有一个单一的传感器系统能够满足跟踪和识别所有类型移动物体的要求。近年来,无线传感器网络 (WSN) 已在许多关键应用中得到部署,例如安全监视和目标跟踪。该技术可以帮助以较低的成本满足机场监视要求,对于小型机场尤其有用,并且可以填补大型机场的雷达覆盖空白。本文提出了一种全局集成解决方案,使用声学传感器预测目标轨迹并防止与机场环境关键区域发生碰撞。所提出的系统代表了一种低成本有效的监视技术,用于定位和跟踪移动物体,使用更先进的无线传感器网络和跟踪算法。首选系统最终可以替代地面运动主雷达 (SMR),后者是世界上用于跟踪机场地面运动的最广泛的雷达。所提出的跟踪系统使用特殊形式的 PHD 滤波器和粒子滤波器来准确跟踪多个目标。
摘要。当前的空中交通管理 (ATM) 功能方法正在发生变化:现在将“时间”作为轨迹的附加第四维度。这一概念将要求飞机准确遵守指定检查点的到达时间,称为时间窗口 (TW)。在此背景下,我们回顾了 4D 轨迹的操作概念,首先分析了它们在通信、导航和监视 (CNS) 系统中实施的基本要求,然后研究了它们在未来 ATM 环境中的管理。我们专注于定义 4D 轨迹与未来 ATM 框架的其他概念和系统之间的关系,以及其应用所需的需求,详细说明必须部署的主要工具、程序和 ATM/CNS 系统。我们评估了 4D 轨迹的管理和规划方式(协商、同步、修改和验证过程)。然后,基于 4D 轨迹的退化,我们通过评估退化容差和条件来定义和引入必要的纠正措施。
受监控的量子系统经历其汉密尔顿量控制参数的循环演化,积累的几何相位取决于系统演化时所遵循的量子轨迹。相位值将由幺正动力学和系统与环境的相互作用决定。因此,由于随机量子跳跃的发生,几何相位将获得随机特性。在这里,我们研究受监控量子系统中几何相位的分布函数,并讨论何时/是否提出用于测量开放量子系统中几何相位的不同量代表分布。我们还考虑了一个受监控的回声协议,并讨论了在哪些情况下实验中提取的干涉图案的分布与几何相位相关。此外,对于没有量子跳跃的单个轨迹,我们揭示了在一个循环后获得的相位中的拓扑转变,并展示了如何在回声协议中观察到这种关键行为。对于相同的参数,密度矩阵不显示任何奇异性。我们通过考虑一个典型案例来说明我们所有的主要结果,即在存在外部环境的情况下,自旋 1/2 沉浸在随时间变化的磁场中。然而,我们分析的主要结果相当普遍,并且在其定性特征上不依赖于所研究模型的选择。
摘要。当前的空中交通管理 (ATM) 功能方法正在发生变化:现在“时间”被整合为轨迹的第四维度。这一概念将要求飞机准确遵守指定检查点的到达时间,称为时间窗口 (TW)。在此背景下,我们回顾了 4D 轨迹的操作概念,首先分析了它们在通信、导航和监视 (CNS) 系统中实施的基本要求,然后研究了它们在未来 ATM 环境中的管理。我们专注于定义 4D 轨迹与未来 ATM 框架的其他概念和系统之间的关系,以及其应用所需的需求,详细说明必须部署的主要工具、程序和 ATM/CNS 系统。我们评估了 4D 轨迹的管理和规划方式(协商、同步、修改和验证过程)。然后,基于 4D 轨迹的退化,我们通过评估退化容差和条件来定义和引入必要的纠正措施。
路径特征是有效捕获路径的分析和几何特性的路径的强大表示,具有有用的代数特性,包括通过张量产品快速串联路径的特性。签名最近在用于时间序列分析的机器学习问题中广泛采用。在这项工作中,我们建立了通常用于最佳控制和吸引路径签名属性的价值函数之间的连接。这些连接激发了我们的新颖控制框架,具有签名转换,从而有效地将Bellman方程推广到轨迹空间。我们分析框架的属性和优势,称为签名控制。特别是我们证明(i)它自然可以处理不同/适应性的时间步骤; (ii)它比价值功能更新更有效地传播更高级别的信息; (iii)对于长期推出而言,动态系统错误指定是可靠的。作为我们框架的特定情况,我们设计了一种模型预测控制方法。此方法概括了整体控制,适合未知干扰的问题。在模拟中测试了所提出的算法,其中包括可区分的物理模型,包括典型的控制和机器人技术任务,例如点质量,ant模型的曲线跟随以及机器人操纵器。关键字:决策,路径签名,钟声方程,积分控制,模型预测控制,机器人技术
用于轨迹建模。o 氢轨迹与工业发展轨迹保持一致。– 建模的技术和技术变化范围更广,包括改进的地源热泵和太阳能热能表示。– 对相关伴随适应成本进行高水平审查。• 与净零分析一样,难以脱碳的属性(例如遗产价值和空间限制)在建模中得到体现。在某些情况下,相对于以前的工作(专门针对难以脱碳的住宅),表示方式是简化的,以适应其他地方更高程度的复杂性。
本文提出了一种用于柔性飞机同时进行轨迹跟踪和载荷减轻的非线性控制结构。通过利用控制冗余,在不降低刚体指令跟踪性能的情况下减轻了阵风和机动载荷。所提出的控制结构包含四个级联控制环路:位置控制、飞行路径控制、姿态控制和最优多目标机翼控制。由于位置运动学不受模型不确定性的影响,因此采用非线性动态逆控制。相反,飞行路径动力学受到模型不确定性和大气扰动的干扰;因此采用增量滑模控制。基于 Lyapunov 的分析表明,该方法可以同时降低模型依赖性和传统滑模控制方法的最小可能增益。此外,姿态动力学为严格反馈形式,因此采用增量反步滑模控制。此外,设计了一种新型负载参考生成器,以区分执行机动所需的负载和过载负载。负载参考由内环最优机翼控制器实现,而过载负载由襟翼自然化,而不会影响外环跟踪性能。通过空间冯·卡门湍流场中的轨迹跟踪任务和阵风负载缓解任务验证了所提出的控制架构的优点。
摘要 本文介绍了一种负载调制平衡放大器 (LMBA) 的设计方法,重点是减轻 AMPM 失真。通过引入二次谐波控制作为设计自由度,可以选择复杂的负载轨迹来补偿设备中的 AMPM 非线性,而不会显著影响效率。数学推导伴随着基于闭式方程的设计程序,以仅基于负载牵引数据来制造 LMBA。通过对三种不同设计进行测量比较来验证该理论,这些设计在伪 RF 输入 Doherty 类 LMBA 配置中以 2.4 GHz 运行,具有 J 类、-B 类和 -J* 类主 PA。J 类原型的性能优于其他设计,在峰值输出功率和 6 dB 回退时分别具有 54% 和 49% 的漏极效率,并且在此功率范围内只有 4 度的 AM-PM。当使用 10 MHz、8.6 dB PAPR LTE 信号驱动时,无需数字预失真,即可实现 40.5% 的平均效率和优于 − 40.5 dBc 的 ACLR。
我们研究由统一门,投影测量和控制操作组成的量子电路,将系统带向纯净的吸收状态。随着这些对照操作的速率提高:测量引起的纠缠过渡,以及向吸收状态的定向渗透过渡(在这里被视为产品状态)。在这项工作中,我们分析表明,这些过渡通常是不同的,并且在达到吸收状态过渡之前,量子轨迹变得脱节,我们分析了它们的关键特性。我们介绍了一类简单的模型,其中每个量子轨迹中的测量值定义有效张量网络(ETN) - 最初时空图的亚图,在该图中发生了非平凡的时间演化。通过分析ETN的纠缠特性,我们表明纠缠和吸收状态过渡仅在有限的局部希尔伯特空间维度的极限下重合。专注于允许大型系统大小的数值模拟的Clifford模型,我们验证了我们的预测并研究了大型局部希尔伯特空间维度的两个过渡之间的有限尺寸的交叉。我们提供的证据表明,纠缠过渡由与没有反馈的混合电路相同的固定点约束。
产前酒精暴露(PAE)发生在约11%的北美怀孕中,是神经发育障碍的最常见原因,例如胎儿酒精谱系障碍(FASD; 〜2-5%的患病率)。PAE一直与儿童,青少年和成人的灰质体积较小有关。少数纵向研究表明,童年晚期/青春期灰质发育轨迹改变了,但幼儿幼儿的模式和潜在的性别差异并未在幼儿中表征。使用纵向T1加权MRI,本研究表征了患有PAE的幼儿(n = 42,84次扫描,3-8岁)的灰质体积发育(n = 127,450扫描,2-8.5岁年龄)。总体而言,我们观察到PAE组的全球和区域灰质发育轨迹发生了变化,在那里他们减弱了与年龄相关的增加,相对于未暴露的儿童,它们的体积减少了。此外,我们发现PAE儿童的性别差异更大。 PAE的女性具有最小的灰质体积和所有组的年龄相关变化。这种改变的发展模式可能表明大脑的可塑性和/或加速成熟,并可能是PAE儿童经常遇到的认知/行为困难的基础。与先前对年龄较大的儿童,青少年和成年人的研究相结合,我们的结果表明,与PAE相关的灰质体积差异因年龄而异,并且在大儿童中可能会变得更加明显。