路径特征是有效捕获路径的分析和几何特性的路径的强大表示,具有有用的代数特性,包括通过张量产品快速串联路径的特性。签名最近在用于时间序列分析的机器学习问题中广泛采用。在这项工作中,我们建立了通常用于最佳控制和吸引路径签名属性的价值函数之间的连接。这些连接激发了我们的新颖控制框架,具有签名转换,从而有效地将Bellman方程推广到轨迹空间。我们分析框架的属性和优势,称为签名控制。特别是我们证明(i)它自然可以处理不同/适应性的时间步骤; (ii)它比价值功能更新更有效地传播更高级别的信息; (iii)对于长期推出而言,动态系统错误指定是可靠的。作为我们框架的特定情况,我们设计了一种模型预测控制方法。此方法概括了整体控制,适合未知干扰的问题。在模拟中测试了所提出的算法,其中包括可区分的物理模型,包括典型的控制和机器人技术任务,例如点质量,ant模型的曲线跟随以及机器人操纵器。关键字:决策,路径签名,钟声方程,积分控制,模型预测控制,机器人技术
主要关键词