大型视觉模型的发展,无明显的剪辑,已经催化了对有效适应技术的研究,特别着眼于软及时调整。联合使用,使用单个图像的多个增强视图来增强零击的概括,它正在成为互动的重要领域。这主要指导研究工作,以进行测试时间及时调整。相比之下,我们为t estime a u Megentation(MTA)引入了强大的m eanshift,该方法超过了基于及时的方法而无需进行此类训练程序。这将MTA定位为独立和基于API的应用程序的理想解决方案。此外,我们的方法不依赖于某些先前测试时间augting技术中使用的临时规则(例如,置信度阈值)来过滤增强视图。相反,MTA将每种视图的质量评估变量直接纳入其优化过程,称为inllielness评分。该分数通过寻求过程进行了共同优化,从而导致有效的训练和无参数方法。我们在15个数据集上广泛地标记了我们的方法,并演示了MTA的优势和计算效率。在零摄像机模型和最先进的几种方法的顶部轻松部署为插件模块,MTA显示了系统的和一致的改进。
主要关键词