神经活动通常是低维的,并且仅由少数几个突出的神经共变模式主导。有人假设这些共变模式可以形成用于快速灵活运动控制的基石。支持这一想法的是,最近的实验表明,猴子可以在几分钟内学会调整其运动皮层中的神经活动,前提是变化位于原始低维子空间(也称为神经流形)内。然而,这种流形内适应背后的神经机制仍然未知。在这里,我们在计算模型中表明,由学习到的反馈信号驱动的循环权重修改可以解释在流形内和流形外学习之间观察到的行为差异。我们的研究结果提供了一个新的视角,表明循环权重变化不一定会导致神经流形发生变化。相反,成功的学习自然会限制在一个共同的子空间中。