摘要目的——本文旨在介绍 TIVANO 国家资助项目框架内取得的主要成果,该项目可能分步预测混合/电动中空长航时 (MALE) 无人机 (UAV) 执行持续情报监视侦察 (ISR) 军事行动所需的支持技术的演变和设计。设计/方法/方法——分析混合推进系统的不同架构,指出它们的运行模式,以选择更适合参考飞机的架构。进一步分析所选架构及其电力装置分支,重点分析电气系统架构和所选电机。最后在飞机层面对混合动力和标准推进进行了比较。结果——使用混合动力推进可以减轻飞机总重量并提高安全水平。然而,这个结果会导致爬升阶段性能下降。实际意义——本研究可作为类似研究的参考,并详细描述了推进操作模式、电源管理、电气系统和机器架构。原创性/价值——本研究提出了一种新型混合动力推进应用,重点关注用于 ISR 任务的三吨级 MALE 无人机。它提供了推进系统的新操作模式和详细的 ele
在含有机污染物的废水(例如下水道或工厂废水)的处理中,为了满足再利用水、满足更严格的出水水质规定或满足场地限制等要求,膜生物反应器(MBR* 1 )已得到实际应用。MBR 是将节省空间且可确保高质量处理水的膜分离与传统的生物处理相结合。此前,住友电气工业株式会社已将利用其专有技术开发的聚四氟乙烯 (PTFE) 复合中空纤维膜制成的水处理膜商业化。我们开发了一种比传统产品更节能、更节省空间的膜模块单元产品。本文特别介绍了该产品的规格、性能和应用实例。
碳基中空结构纳米材料由于其独特的结构、优异的理化性质和良好的应用前景,成为中空结构纳米材料研究和开发的热点领域之一,新型碳基中空结构纳米材料的设计与合成具有重大的科学意义和广泛的应用价值。综述了近年来碳基中空结构纳米材料的合成、结构、功能化及其相关应用的研究进展,简要介绍了碳基中空结构纳米材料的基本合成策略,详细描述了碳基中空结构纳米材料的结构设计、材料功能化和主要应用。最后,讨论了当前碳基中空结构纳米材料合成与应用面临的挑战与机遇。关键词:中空结构;碳基纳米材料;制备方法
摘要:从历史上看,减少室内环境中呼吸道病毒的气溶胶传播对于控制流感病毒和普通感冒鼻病毒非常重要。目前与 SARS-CoV-2 相关的公共卫生紧急情况使这一主题至关重要。尚待测试的是为疑似/确诊病人或需要隔离的敏感人群创建隔离区 (IZ) 的简单干预措施的潜在有效性。现有住宅的目的是找到一种减轻空气污染物暴露的实用方法。在研究中,在有人居住的单户住宅中创建 IZ 时,测试了四种简单的策略。测试配置为:(1) IZ 窗户关闭,IZ 浴室排气通风机关闭,(2) IZ 窗户关闭,IZ 排气机打开,(3) IZ 窗户打开,IZ 排气机关闭,(4) IZ 窗户打开,IZ 排气机打开。香火产生的细颗粒物 (PM 2.5) 被用作病毒传播的标记。通过测量 PM 2.5 从 IZ 转移到房屋的主要区域 (MZ),我们能够确定四种遏制策略的相对有效性。总的来说,来自压差(跨区域)和 PM 2.5 测量的数据表明,最佳遏制策略是通过持续运行浴室排气机同时保持 IZ 中的窗户关闭(配置 2)来实现的。由于风速和风向的变化,使用开窗干预的可靠性较低,导致 IZ 相对于 MZ 的压差不可预测且有时有害。我们的研究结果强烈表明,简单的 IZ 排气通风策略有可能减轻 SARS-CoV-2 等污染物通过空气传播的风险。
11 最近,基于金属有机骨架 (MOF) 的聚合物基底在许多工程 12 和技术领域展现出良好的性能。然而,MOF/聚合物复合材料的一个常见缺点是 MOF 晶体封装和 13 表面积减小。这项工作报告了一种简便温和的生产自支撑 MOF 为主的中空 14 纤维垫的策略。通过 15 我们的合成方法成功制造了多种中空 MOF,包括 MIL-53(Al)-NH 2 、Al-PMOF 和 ZIF-8 16 。该合成策略结合了金属氧化物的原子层沉积 (ALD) 到聚合物纤维,16 随后选择性去除聚合物成分,然后将剩余的中空金属氧化物转化为 17 独立的 MOF 为主的中空纤维结构。中空 MOF 表现出增大的表面积、极好的孔隙率、优异的孔隙可达性,并在 CO 2 吸附(3.30 mmol g -1 )、CO 2 /N 2 分离选择性(15/85 和 50/50 CO 2 /N 2 混合物分别为 24.9 和 21.2)和催化去除 HCHO(60 分钟内完成 150 ppm 的氧化)方面表现出显着改善的性能。
无线电 - 声音 100m - 100km 各种调查(气象等) 高空喷气式飞机 10km -12km 侦察 广域调查 低空或中空飞机 500m - 8,000m 各种航空调查
摘要:本研究采用有限元法(FEM)对层压复合材料结构进行拓扑优化数值研究。在该方法中,层片方向被排除在优化之外。介绍了中空长航时无人机机身结构框架的几何优化。目标函数中使用了最小应变能,优化约束为减重20%。在进行初步分析之前,对以前发表的文献中不考虑方向的拓扑优化进行了基准研究。进行了收敛研究,以获得FEM技术中合适的网格尺寸,该技术利用了四节点壳单元。有限元分析与优化结果表明,新型框架复合材料机身中空长航时无人机结构设计满足适航标准STANAG 4671规定的结构强度要求。
• 开发中空纤维膜上的气体扩散电极,以从 CO 2 产生可调比例的 CO/H 2 • 对蓝藻进行基因工程,以最大限度地从 CO/H 2 /CO 2 生产异丙醇并建立集成系统
海军陆战队空地特遣部队无人机系统中空长航时(MUX MALE)增量 II、SkyTower II MTA(MUX MALE Inc II SkyTower II MTA)MUX MALE Inc II SkyTower II MTA 海军 XX
海军陆战队空地特遣部队无人机系统中空长航时(MUX MALE)增量 II、SkyTower II MTA(MUX MALE Inc II SkyTower II MTA)MUX MALE Inc II SkyTower II MTA 海军 XX