摘要——由于人口增长和工业进步,全球对可持续发展的关注度不断上升。因此,人们进行了各种研究,以探索改善环境和利用可再生能源的新趋势。沸石是一种具有分子尺寸微孔的晶体材料。明矾泥是饮用水净化过程中产生的副产品,数量不可避免。本文介绍了沸石用于增强可持续能源存储系统的方法。沸石 (ZSM-12) 是由废明矾泥饼脱水去除多余水分后热分解合成的。ZSM-12 是一种高硅沸石,是一种通过相变材料 (PCM) 增强潜热储能介质的先进应用。进行了包括 XRD (X 射线衍射仪) 和 SEM (扫描电子显微镜) 在内的微观测量,以检查改性明矾泥中沸石 (ZSM-12) 的存在。在中试规模的太阳能存储系统中,添加含沸石的明矾泥 (AS) 的相变材料 (PCM/AS/ZSM-12) 的热性能比纯 PCM 提高了 15%,储存热量达到 89 kJ,而基于石蜡的纯 PCM 的储存热量为 7 kJ。
• 电力保管转移点:与电网连接、孤岛、可再生能源组合和电力购买协议的计量表后。 • H2 保管转移点:管道拖车、天然气混合、氢气管道。 2. 研究系统与商业系统的计量和监控需求。 3. 准备氢气系统规模和需求场景以及系统测试和特性描述程序。 4. 使用上述场景中的需求配置文件和测试程序进行硬件系统特性描述。 5. 创建可扩展的数字孪生。探索共享平衡工厂 (BOP) 机会、维护计划、退化特性和模块化系统最佳实践的优势。 6. 使用可再生能源集成和优化 (ReOpt) 工具针对优化系统规模的短期、中期和长期场景进行优化。优化中考虑压缩机效率和主要电气负载。 7-9 HIL 测试以及在综合能源系统高级研究 (ARIES) 虚拟网络中的仿真,用于中试规模、分散和集中氢气生产。 10. 任务的中期报告和最终报告。 2023 年 3 月 30 日通过/不通过决定:NREL 1.25MW 电解器的测试和特性分析。(待系统调试时间:5 月)
摘要:纤维素溶液在制成各种再生产品 (如纤维、薄膜) 之前几乎不可避免地需要进行储存,尤其是在工业生产中。因此,有必要评估储存时间和温度对纤维素在感兴趣的 TBAH 基溶剂 (包括 TBAH/H 2 O、TBAH/H 2 O/DMSO、TBAH/H 2 O/尿素) 中溶解状态的影响,以及对相关再生产品 (本文制备了薄膜进行评估) 的力学性能的影响。利用偏光显微镜照片和 Stormer 粘度分析了纤维素在这些溶剂中以及储存过程中的溶解状态。针对感兴趣的 TBAH/H 2 O/DMSO 溶剂,讨论了储存时间和温度对溶液粘度和纤维素聚合度的影响。确定了不同贮存温度下纤维素发生明显降解的临界贮存时间,制备了一系列贮存时间为0~200小时的再生纤维素膜,探讨了纤维素/TBAH/H 2 O/DMSO溶液再生纤维素膜的最佳贮存时间和强化机理,可为纤维素/TBAH/H 2 O/DMSO贮存时间和温度的研究提供参考,尤其可为中试生产等提供参考。
深脑刺激(DBS)是针对众多神经系统疾病的患者的一种治疗方法,包括帕金森氏病[1-4],必需震颤[5-7]和肌张力障碍[8-11] [8-11],药物治疗不足。护理标准目前以连续的方式提供DBS,而无需自动反馈以根据不断变化的运动标志调整治疗。最近的工作集中在自适应DBS(ADB)的发展上,在这种发展中,刺激是针对患者临床状态的生物标志物进行调节的[12]。神经生理生物标志物,例如从DBS铅记录的局部局部场电位(LFP)的信号特性,经常被提议作为ADBS系统的反馈信号[13,14]。例如,从丘脑下核(STN)记录的β范围(13-30 Hz)振荡与帕金森氏病的症状相关[13],并且成功实施了β波段功率作为基于实验室的ADB实施的控制信号[15-17]。在宫颈肌张力障碍中使用较低的频带(4-12 Hz)在宫颈肌张力障碍(GP)[18]中试用了类似的范例。因此,使用皮质下LFP生物标志物成功应用ADB是依赖于神经信号的准确感测,尤其是在感兴趣的频带中。
摘要 卡诺电池被认为是一种有前途的适用于中型和大型应用的电-热-电存储技术。最近,有人提出在卡诺电池中使用两用热机。在这样的系统中,单个装置在充电期间充当热泵(HP,压缩机操作)或在放电期间充当有机朗肯循环(ORC,膨胀机操作)。与使用两台独立机器的传统卡诺电池相比,这种配置降低了该技术的投资成本。已经在小型(1 kW el)卡诺电池中试工厂使用单个涡旋压缩机/膨胀机进行了实验活动。在充电和放电模式下都测试了广泛的操作条件。讨论了系统电荷对两种操作模式下可获得工作点的影响。研究发现,在 HP 模式下运行系统所需的系统电荷低于 ORC 模式。在这些低电荷下,增加 HP 模式下的电荷对系统在较高源温和散热器温度下的性能有积极影响。在 ORC 模式的较高电荷下,发现增加系统电荷对研究的运行范围内的系统启动有积极影响。除了定性讨论外,还对系统和涡旋机进行了定量研究。
本研究应用生命周期评价 (LCA) 评估和比较了三种布洛芬生产路线的环境影响,即 BHC、Bogdan 和新开发的酶合成路线(改进的 Bogdan 工艺)。基于通过文献和实验室实验获得的数据,使用 Aspen Plus V11 ® 模拟了日产 500 克布洛芬的中试规模生产,以生成 LCA 研究的库存数据。选择完善的 BHC 工艺作为基准,以量化创新的酶 Bogdan 流合成工艺的运营和环境效益。比较凸显了采用通过酶催化剂改进的 Bogdan 合成路线的好处。结果表明,在分析的整个影响类别中都可以普遍减少环境影响,并且这种减少的幅度取决于生产系统中的回收效率。考虑到回收效率为 50%,改进的 Bogdan 系统在某些影响类别(如酸化、淡水生态毒性、人类毒性、颗粒物和资源枯竭(矿物、化石、可再生能源))中实现了较低的环境影响,而对其余影响类别的影响则较大。然而,当酶回收率接近 100% 时,这里提出的新工艺在所有影响类别中都获得了更好的环境性能,这对未来的技术发展很有希望。
ȑ财团(四个欧盟国家)将开发并建立一个网络和实践社区,为在气候变化及其影响方面的服务和学生教师提供创新的战略和计划,以为服务和学生教师提供准备和持续的专业发展。建立后,它将向新成员开放; ȑ教育材料专注于引起人类引起的气候扰动的驾驶员,气候变化的影响以及可持续性措施将针对初始教育和专业发展量身定制,并公开向欧洲的所有教育机构公开使用; ȑ使用现代的教育实践和工具,将共同开发材料,旨在轻松访问,采用和复制,并以教师为受训者和合作设计师。这将是通过一个常见的虚拟气候礼堂(Claudi)建立教师的气候变化教育学院的基础,而在独立国家的四个枢纽则是由区域特殊性驱动的特定焦点; ȑ在Climademy的三年中,欧洲的前200名服务和学生老师将通过在线,物理和混合培训中试用活动,并将成为导致网络增长并分配其目标的种子。实际上将接受更多的教师,并将涉及更多的学校,这为EEA气候联盟的教育做出了贡献。
纸浆悬浮液由水、纤维、细小纤维、填料和化学品组成,但几乎所有制浆工艺中也都存在空气或其他气体,它们以溶解形式或气泡形式存在。溶解气体很少干扰工艺,但当条件发生变化时,它们很容易转化为气态。气泡会影响纸浆悬浮液的性质,降低某些测量的准确性,干扰造纸机的运行能力,并降低最终产品的质量。气体通过机械或化学方法从工艺中去除,导致投资和运营成本增加。这项工作的目的是通过实验室、中试规模和工厂规模的实验研究气体在纸浆和造纸工艺中的行为。研究的五个主要领域可以确定:1. 纸浆和造纸厂工艺中气体的出现,2. 气体在纸浆悬浮液和工厂水中的溶解、沉淀和滞留,3. 气体对某些稠度测量、离心泵送和水力旋流器操作的影响。 4. 通过压缩、辐射、微波和声纳方法测量纸浆悬浮液中的气体含量,以及 5. 使用配备真空泵的离心泵或配备轻质杂质去除的水力旋流器去除气体。结果表明,气体的溶解和沉淀很大程度上取决于纸浆和水的性质。溶解和胶体物质降低了
由于需要利用最大、最清洁的能源,即太阳能,太阳能在当今时代显得尤为重要。产生太阳能最具创新性和最简单的技术之一是使用太阳能烟囱。然而,太阳能烟囱发电厂的投资成本高,而且传统上效率很低。数学和 CFD 模型提供了一种优化此类烟囱性能的好方法。若干因素会影响太阳能烟囱的发电量,包括几何因素(如集热器直径、烟囱高度)和昼夜温差。然而,挑战在于昼夜温差,因此发电量不稳定。在目前的研究中,建立了一个太阳能烟囱的中试规模 CFD 模型(原型为西班牙曼萨纳雷斯烟囱,哈夫,1984 年),并用实验数据和文献中的分析模型(与实验数据的偏差 ∼ < 10%)进行了验证。随后,研究了流动模式,并对烟囱的关键参数(即烟囱高度和集热器直径)进行了参数研究。首次研究了昼夜变化对发电量的影响。考虑到昼夜变化,发现夜间发电量是烟囱高度和集热器直径的线性函数;而在白天,发电量随着集热器直径和烟囱高度的变化而呈指数增加。
摘要:为了应对能源转型带来的挑战,可再生能源应变得更加持续可用、可靠和具有成本效益。因此,本文介绍了一种称为基于流化的颗粒热能存储 (FP-TES) 的概念的中试工厂布局的分析和数值研究。FP-TES 是一种高度灵活的短期至长期流化床再生热存储,利用压力梯度进行热粉传输,从而实现最小损失、高能量密度、紧凑结构和逆流热交换。分散式设置中的此类设备(包括在能源密集型和特别是热密集型行业中,存储潜热或显热或电能转化为热能以最大限度地减少损失并补偿波动)可以帮助实现上述目标。本文的第一部分重点介绍通过利用计算粒子流体动力学 (CPFD) 的数值研究进行几何和流体设计。在此过程中,开发了一种称为 FP-TES 联合仿真的受控瞬态仿真方法,为测试台设计和进一步联合仿真的执行奠定了基础。在此过程中,开发了一种先进的旋转对称料斗设计,在热交换器 (HEX) 中带有附加挡板,并在内部管道中稳定颗粒质量流。此外,通过考虑料斗外层的隔热,提出了贡献体积热导率,以证明低热损失和有限的隔热需求。