X. Ma, H. Bin, BT van Gorkom, TPA van der Pol, MJ Dyson, CHL Weijtens, SCJ Meskers, RAJ Janssen, GH Gelinck 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 电子邮件: rajjanssen@tue.n l M. Fattori 电气工程系 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 AJJM van Breemen, D. Tordera, GH Gelinck TNO/Holst Center High Tech Campus 31 Eindhoven 5656 AE, 荷兰 瓦伦西亚 C/ Chair of J. Beltran 2, Paterna 46980, 西班牙 RAJ Janssen 荷兰基础能源研究所 De Zaale 20, Eindhoven 5612 AJ, 荷兰
1 柏林洪堡大学,Newtonstr。 15,12489 柏林,德国 2 亥姆霍兹研究所美因茨约翰内斯古腾堡大学美因茨分校,55128 美因茨,德国 3 加州大学伯克利分校物理系,94720-7300,美国 4 新南威尔士大学物理学院,悉尼 2052,澳大利亚 5 斯坦福大学 HEPL 物理系,452 Lomita Mall,斯坦福,加利福尼亚州 94305,美国 6 Atomic Developers,2501 Buffalo Gap Rd #5933,阿比林,德克萨斯州 79605,美国 7 威斯康星大学麦迪逊分校物理系,麦迪逊,WI 53706,美国 8 国家标准与技术研究所,博尔德,科罗拉多州 80305,美国宇宙数学(WPI),东京大学高等研究院,东京大学,柏,千叶 277-8583,日本 10 悉尼大学物理学院,新南威尔士州 2006,澳大利亚 11 JILA,国家标准与技术研究所和科罗拉多大学,科罗拉多大学博尔德分校物理系,科罗拉多州 80309-0440,美国 12 加州理工学院喷气推进实验室,帕萨迪纳,加利福尼亚州 91109,美国 ∗ 任何通讯作者请致函。
光学纳米天线能够在纳米尺度上压缩光并增强光与物质的相互作用,因此对光子器件和光谱学具有重要意义。其中,由支持声子极化子的极性晶体制成的纳米天线(声子纳米天线)表现出最高的品质因数。这是因为这些材料固有的低光损耗,然而,由于它们的介电性质,阻碍了纳米天线的光谱调谐。在这里,通过近场纳米显微镜监测,在很宽的光谱范围(≈ 35 cm − 1 ,即共振线宽 ≈ 9 cm − 1 )内实现了声子纳米天线中超窄共振的主动和被动调谐。为此,将由六方氮化硼制成的单个纳米天线放置在不同的极性基底上(例如石英和 4H-碳化硅),或用高折射率范德华晶体 (WSe 2 ) 的层覆盖它,以改变其局部环境。重要的是,通过将纳米天线放置在费米能量变化的门控石墨烯单层顶部,可以实现纳米天线极化子共振的主动调谐。这项工作提出了具有超窄共振的可调极化子纳米天线的实现,可用于主动纳米光学和(生物)传感。
操作阶段I K-Demo不被视为最终演示。这是商业反应堆的一种测试设施。但是,操作II阶段K-Demo将需要大量的上级,如果需要,替换毯子和分离系统等。操作阶段I K-DEMO•在初始阶段,许多端口将用于操作和燃烧等离子体物理研究的诊断,但其中许多端口将转换为CTF(组件测试设施)。•将至少为CTF指定一个以上的端口,包括毯子测试设施。•应证明净发电(Q Eng> 1)和自给自足的tri循环(TBR> 1.05)。行动II阶段K-DEMO•尽管将进行大量船尾组件的大规模升级,但至少将为CTF指定一个端口以进行未来的研究。•预计将证明大于450 MWE的净发电和自给自足的tri循环。•总体上所有植物可用性> 70%。•需要证明COE中的竞争力。
光学纳米天线能够在纳米尺度上压缩光并增强光与物质的相互作用,因此对光子器件和光谱学具有重要意义。其中,由支持声子极化子的极性晶体制成的纳米天线(声子纳米天线)表现出最高的品质因数。这是因为这些材料固有的低光损耗,然而,由于它们的介电性质,阻碍了纳米天线的光谱调谐。在这里,通过近场纳米显微镜监测,在很宽的光谱范围(≈ 35 cm − 1 ,即共振线宽 ≈ 9 cm − 1 )内实现了声子纳米天线中超窄共振的主动和被动调谐。为此,将由六方氮化硼制成的单个纳米天线放置在不同的极性基底上(例如石英和 4H-碳化硅),或用高折射率范德华晶体 (WSe 2 ) 的层覆盖它,以改变其局部环境。重要的是,通过将纳米天线放置在费米能量变化的门控石墨烯单层顶部,可以实现纳米天线极化子共振的主动调谐。这项工作提出了具有超窄共振的可调极化子纳米天线的实现,可用于主动纳米光学和(生物)传感。
在库欣氏病(CD)的先前研究中,强调了超皮质醇对人脑的不利影响。然而,大脑中区域高皮层化的相对改变尚不清楚。因此,我们研究了CD患者的区域体积改变。我们还分析了这些体积变化与临床特征之间的关联。研究参与者由活性CD(n = 60),短期缩放的CD(n = 28)和长期转换CD(n = 32)患者以及健康对照组组成的研究参与者(n = 66)。灰质体积(GMV)。使用自动解剖标记(AAL)地图集定义了子结构的GMV。在大多数CD患者的大脑子结构中发现了GMV归一化的趋势。在其他子区域(例如杏仁核,丘脑和尾状)中观察到了不同的趋势,包括扩大,不可逆和不受影响的趋势。分辨率分类后GMV的形态变化是一种复杂的现象。这些变化的特征在大脑子结构内有显着差异。
图像引导的高强度集中超声(HIFU)已越来越多地用于医学中,并且有几种为此的系统已成为商业上可用的。hifu已在全球范围内批准各种实体瘤,神经系统疾病的治疗以及骨转移的姑息治疗。聚焦超声的机械和热效应为组织疗法,支持性放射治疗,和靶向drugdelivery提供了一种可能性。intergentrationFormatigationFormatigationFormantigantInticalInitySintohifusystemSallowsSallowsSallowsSallowsSallowsForPrecisetemperaturementing and Cocigain for Precate ectrate and to anderation sallowsementing和准确的治疗计划,增加了治疗的安全性和效率。临床上的临床和临床结果表明,图像引导的HIFU的潜力减少了不良反应并术后提高生活质量。介入的核形象 - 指导HIFU是未来有吸引力的非侵入性选择。
实时可视化分子转变需要一种具有 A ˚ ngstr om 空间和飞秒时间原子分辨率的结构检索方法。含氢分子的成像还需要一种对氢核原子位置敏感的成像方法,大多数方法对氢散射的灵敏度相对较低。激光诱导电子衍射 (LIED) 是一种桌面技术,可以以亚 A ˚ ngstr om 和飞秒时空分辨率以及对氢散射的相对高灵敏度对气相多原子分子的超快结构变化进行成像。在这里,我们对孤立氨分子 (NH 3 ) 在强场电离后的伞状运动进行了成像。中性氨分子电离后,氨阳离子 (NH 3 + ) 在约 8 飞秒内经历超快几何转变,从金字塔结构 ( U HNH = 107 ) 变为平面结构 ( U HNH = 120 )。利用 LIED,我们在电离后 7:8 9:8 飞秒内恢复了近平面 ( U HNH = 117 6 5 ) 场修饰 NH 3 + 分子结构。我们测量的场修饰 NH 3 + 结构与使用量子化学从头计算计算出的平衡场修饰结构高度一致。
金融市场尚未考虑这种经济差距,主要的海湾股票市场指数大致相符。尽管在2020年10月的交易数量方面,与2019年12月观察到的交易数量增加了2.96次,但随后是阿布扎比(2.41次)和沙特阿拉伯(2.38次),尽管与卡塔尔的交易活动增加了2.96次,但这种差距仍然存在。绩效年度最佳表现在沙特阿拉伯最好,该指数在11月1日结束时仅比2019年底低6.1%,随后卡塔尔为7.5%,阿布扎比为8.7%。各种因素为此做出了贡献,包括今年在沙特阿拉伯启动了7次IPO,以及他们于8月30日开始推出交易的开始。与此同时,在卡塔尔的股票市场,准备工作
64像素阵列/矢量(A 1- a 64),其中每个像素具有值:-1(白色)或1(黑色)(图。2a和图2b)。