TiAl金属间化合物可通过形变诱导相变显著提高材料性能,但对TiAl金属间化合物塑性变形机制尚缺乏足够的认识。本文以双晶结构TiAl合金中的γ − TiAl和α 2 − Ti 3 Al为对象,在纳米尺度上研究了TiAl金属间化合物的位错滑移和孪生变形机制。利用应用扫描电子显微镜(SEM)和电子背散射衍射对变形内部组织进行表征和分析,采用Schmidt因子µ分析技术计算滑移能垒,研究了临界剪应力下γ − TiAl和α 2 − Ti 3 Al相的孪生变形机制以及γ − TiAl和α 2 − Ti 3 Al相的位错滑移动力学。两种双晶结构 γ − TiAl 和 α 2 − Ti 3 Al 的 TiAl 金属间化合物所需的临界剪应力分别为 92 和 108 MPa,孪生萌生时锥形 < a > 和基底 < a > 滑移所需的临界剪应力次之。孪生萌生时锥形 < c + a > 滑移所需的临界剪应力最高,且两者在数值上相等
4.3 应变流中胶囊周围的速度场和压力云图(Re = 160,Ac = 0.1)。使用 p(J,' 标准化压力。4.4 胶囊膜表面的压力和剪切应力分布(使用 pU,' 标准化)(Re = 160,Ac = 0.1)。4.5 胶囊膜中的轴向、环向和冯·米塞斯张力(Re = 160,Ac = 0.1)。4.6 临界韦伯数对雷诺数和加速度数的依赖性。4.1 临界韦伯数对可行均质机操作线雷诺数的依赖性。4.8 操作压力和细胞直径对球形细胞内产生的最大张力的影响。4.9 修正临界韦伯数对修正雷诺数和加速度数的依赖性。
许可证和建立联系信息。根据HACCP计划控制的食物列表。每个食品的流程图,包括过程步骤,危害,危害控制,临界控制点,成分,设备和食谱的步骤。关键控制点和临界限制。正在遵循监视关键限制和验证标准操作程序的方法和频率。纠正措施。支持文件,例如员工培训标准操作程序,空白记录表格以及DATCP所需的任何其他信息。
湿度也是决定金属腐蚀速率的主要因素,因为水分提供了腐蚀反应所需的电解质。一般来说,腐蚀速率随着湿度的增加而增加。在没有其他电解质的情况下,发生严重腐蚀的临界相对湿度通常为 60%。3 此临界相对湿度可能因大气中存在的杂质而异。降雨可以增加或减少腐蚀过程。在可能积聚死水的区域,最有可能形成局部腐蚀电池。但是,雨水也可能将腐蚀性沉积物从金属表面冲走,从而降低腐蚀性。
(ii) 起飞决断速度 Vi 是地面上的校准空速,在此速度下,由于发动机故障或其他原因,飞行员被认为已做出继续或停止起飞的决定。起飞决断速度 Vi 必须由申请人选择,但不得小于 VEF 加上临界发动机在临界发动机故障时刻与飞行员识别并应对发动机故障时刻之间的时间间隔内获得的速度,如飞行员在 JAR 23.55 的加速停止确定过程中应用第一个减速装置所示。
在X GA 1 x N合金中的低温电导率(0.06 6 x 6 0.135)被分析是inimium成分(x)的函数。尽管我们的X GA 1 x N合金位于金属 - 绝缘体过渡的金属侧,但Kubo-Greenwood和Born方法都无法描述X GA 1 x N合金中的运输特性。此外,所有X GA 1 x N合金中的所有内容都在其电导率较低的Ioeffe -Regel制度下方进行。在缩放理论的框架中讨论了观察到的行为。随着依赖性组成的减少,观察到热活化能的降低。对于金属 - 绝缘子的跃迁,在x Ga 1 x N合金中获得临界依赖组成为x c = 0.0543。2009 Elsevier B.V.保留所有权利。