目标:动脉高血压与肾素 - 血管紧张素系统的触发有关,导致左心室纤维化和较差的心血管结局。在这项研究中,从效应注册表中选择了经经导管主动脉瓣植入(TAVI)的合并症动脉高血压和严重主动脉狭窄(AS)的患者,以评估角血管紧张素转化酶抑制剂(ACEIS)或血管素II受体的影响。方法:我们招募了327名接受Tavi的患者。使用Kaplan - MEIER事件率和研究层的多变量COX比例危害回归模型,我们根据注册时的ACEI/ARB治疗状态评估了2年的临床结果。结果:在纳入的患者中,基线时有222名(67.9%)在ACEIS/ARB上,而105(32.1%)没有。用ACEIS/ARB的治疗与心血管死亡率降低2年显着相关(HR = 0.44,95%CI:0.23 - 0.81,p = 0.009)。在多变量调整和倾向分数匹配之后,该关联保持稳定。结论:在一群从效应注册中心选择的高血压患者中,基线时的ACEI/ARB治疗与较低的2年心血管死亡率的风险独立相关,这表明该治疗的潜在受益。需要进行更多的试验来验证这一发现并了解该处理的全部好处。
血管老化是机体衰弱的特征,是心脏、脑、肾等各种重要器官慢性疾病的病理基础。动脉僵硬(AS)是血管老化的结果,伴随而来的是结构和功能的变化(1)。与 AS 相关的病理变化发生在血管壁中。具体而言,由于弹性蛋白降解增强和血管介质中胶原沉积,以及血管周围纤维化和细胞外基质异常,进行性心内膜增厚最终导致血管直径增加(2,3)。血管直径增加过程中血管壁的生物学变化也会导致血管顺应性降低。在先前的研究中,动脉扩张不仅被视为不良血管事件(动脉瘤和动脉夹层)的独立危险因素,也被认为是不良心血管事件的独立预测因子(4)。不良后果与 AS 增加密切相关。心踝血管指数 (CAVI) 于 2006 年推出,作为直接评估动脉僵硬性的方法 ( 5 )。无论血压如何,它都能产生可重复的结果 ( 6 , 7 )。它源自 Bramwell-Hill 方程,并引入了僵硬性参数 β 。该参数 β 代表动脉扩张性,与收缩和舒张期间动脉直径 (AD) 的变化相关 ( 8 )。然而,Spronck 等人的研究报告称,CAVI 与血压并不独立,并提出了一种与血压无关的校正形式,即 CAVI 0 ( 9 , 10 )。它们是使用以下公式计算的:
将人工智能(AI)整合到主动脉狭窄(AS)的临床管理中,已重新定义了我们对这种异质瓣膜心脏病(VHD)评估和管理的方法。虽然瓣膜条件的大规模早期检测受社会经济限制的限制,但AI通过利用常规工具(包括心电图和社区级的听觉)提供了一种具有成本效益的替代解决方案,从而促进了早期检测,预防,预防和治疗。此外,AI阐明了AS的多样性,曾经认为是统一的条件,可以进行更细微的,数据驱动的风险评估和治疗计划。这为重新评估AS的复杂性并使用数据驱动的风险分层以外的传统准则来重新评估的复杂性提供了机会。AI可用于支持治疗决策,包括设备选择,程序技术以及以可复制方式对经导管主动脉瓣置换(TAVR)的随访监视。在认识出显着的AI成就的同时,重要的是要记住,由于潜在的局限性(例如其偏见易感性)以及医疗保健的批判性质,AI仍需要与人类的合作。这种协同作用为我们对AI在AS临床途径中有前途的作用的乐观观点的基础。
图2在AutoStem系统上映射的完整制造过程和平台上的液体流程。(a)沿该设施上不同站点的生产过程步骤的说明,包括I:将细胞播种到生物反应器中; II/III:种植,抽样和收获; IV和V:配方和填充到VI。在80 C冰箱中冻结最终电池产品。(b)生物反应器,媒体水库,废物和A级区域之间的管道组织的例证。为了获得更好的可用性,每行都被分配了不同的颜色。实线:液体;虚线:气体; H1:加热器1; H2:加热器2; BR1:生物反应器1; GCU:气体控制单元,REG:气体调节器; P1-3:蠕动泵1 - 3,V1-8:挤压阀1 - 8。
图 1 理想主动脉几何模型示意图。(a)健康主动脉。(b)主动脉缩窄。缩窄程度为 75%,定义为缩窄处与降主动脉半径比之差。(c)主动脉瘤。注射器指示微载体从近壁区域(距壁 1 毫米)释放的位置。
为¼主动脉狭窄; AVR¼主动脉瓣更换;可以扩展¼气球;最好的¼气球张开与自膨胀的经导管心脏阀; BP¼血压;经导管主动脉瓣植入后dapatavi¼Dapaglilozin; DM¼糖尿病;与无症状严重主动脉狭窄患者的监测相比,TAVR的早期TAVR¼评估;容易 - 在严重的无症状主动脉狭窄研究中,早期瓣膜置换术; ETT¼运动跑步机测试;在无症状主动脉狭窄试验的无症状患者中,以左心室代偿性生物标志物为指导的¼早期瓣膜更换。 GFR¼肾小球效力率; GDMT¼指导的医疗疗法; GLS¼全球纵向应变; HF¼心力衰竭; Lp(a)¼脂蛋白(a); LVEF¼左心室射血分数; MDCT¼多探测器计算机断层扫描; MRI¼磁共振成像; NT-PROBNP¼N末端Pro - B型纳地尿肽;通过临床监测或TAVR进行中度主动脉狭窄的进展¼管理; Rastavi¼肾素 - 血管紧张素系统阻断了经导管主动脉瓣植入后临床进化和心室重塑的益处; Rheia¼在女性中随机研究所有患有主动脉狭窄的人; se¼自扩展; Safr¼手术主动脉瓣更换;智能¼小环体随机进化为TM或Sapien TM试验; STS¼胸外科医师社会; TAVR¼经导管主动脉瓣更换; THV¼经导管心脏阀。
疾病爆发对公共卫生系统构成了重大挑战,通常需要快速的反应策略来减轻广泛的健康和经济影响。传统的爆发预测和监视方法虽然有效,但通常缺乏处理和分析现代医疗保健生态系统中产生的大量异质数据的能力。机器学习(ML)在该域中提供了变革性的潜力,利用其处理大型数据集,识别复杂模式并提供实时见解的能力。通过整合电子健康记录(EHR),社交媒体饲料,气候数据和基因组序列等多种数据源,ML算法可以以前所未有的准确性来预测疾病爆发。已成功应用于预测流感趋势,而无监督的聚类技术已采用用于检测指示新兴感染性疾病的异常情况。此外,ML通过自动化数据处理管道,增强实时监控功能并促进爆发响应的资源优化来促进先进的公共卫生监视。尽管有这些进展,但在公共卫生监视中采用ML并非没有挑战。与数据隐私,道德考虑,算法解释性以及与现有公共卫生基础设施集成有关的问题仍然是重大障碍。本文强调了ML在转变公共卫生监测中的关键作用,重点是其在疾病爆发预测中的应用。解决这些挑战需要一种多学科的方法,结合了健壮的数据治理框架,改善算法透明度以及技术开发商与公共卫生利益相关者之间的合作。它强调了持续创新,监管支持和道德考虑在推进全球卫生安全解决方案方面的重要性。
一家心血管外科诊所,系大学心脏中心弗里布尔格·巴德·克罗辛根(Freiburg Bad Krozingen),大学诊所弗雷堡,德国弗雷堡,德国B弗莱堡B医学学院,阿尔伯特·路德维希大学弗里布尔格,德国弗雷堡,德国c,德国c心血管外科系,c inirigna c Clinic florig froferia c。奥地利E杜普伊特伦-2大学医院心脏病学系,法国利多木斯,f Epimact,Inserm 1094&ird 270,利莫吉斯大学,limoges,法国G,坎帕尼亚大学转化医学科学系,“ L. ”一家心血管外科诊所,系大学心脏中心弗里布尔格·巴德·克罗辛根(Freiburg Bad Krozingen),大学诊所弗雷堡,德国弗雷堡,德国B弗莱堡B医学学院,阿尔伯特·路德维希大学弗里布尔格,德国弗雷堡,德国c,德国c心血管外科系,c inirigna c Clinic florig froferia c。奥地利E杜普伊特伦-2大学医院心脏病学系,法国利多木斯,f Epimact,Inserm 1094&ird 270,利莫吉斯大学,limoges,法国G,坎帕尼亚大学转化医学科学系,“ L.
血管钙化(VC)是动脉粥样硬化和慢性肾脏疾病患者心血管事件的已知预测指标。但是,VC与心血管死亡率之间的确切关系尚不清楚。在此,我们研究了VC进展,动脉僵硬和心脏功能障碍之间的基本机制。c57bl/6小鼠以35×10 4 IU/天的剂量为腹膜内维生素D 3(VD 3),持续14天。在第42天,VC范围,动脉弹性,颈动脉血流,主动脉脉冲传播速度,心脏功能和病理变化。使用TUNEL和免疫组织化学染色检测到心脏凋亡。在体外,将大鼠心肌细胞H9C2暴露于钙化培养基中培养的钙化大鼠血管平滑肌细胞(VSMC)中,然后评估H9C2凋亡和与心脏功能相关的基因表达。VD 3处理的小鼠表现出显着的主动脉钙化,主动脉的脉冲传播速度增加,心脏功能降低。主动脉显示出增加的钙化和弹性,心脏凋亡增加。心脏显示出更高水平的ANP,BNP,MMP2和BCL2/BAX的较低水平。此外,钙化的大鼠VSMC培养基诱导的H9C2凋亡和与心脏功能障碍相关的基因表达上调。我们的数据提供了VC加速心脏功能障碍的证据,部分通过诱导心肌细胞凋亡。
摘要简介:在主动脉狭窄(AS)中,心脏从适应性补偿到心肌病的心脏转变,并最终导致心力衰竭的代表性。需要更好地了解基础的病理生理机制,以便为防止代偿性策略提供信息。涵盖的领域:在本综述中,我们旨在评估AS适应性和适应不良过程的地位,在AVR之前或之后,在AS的适应性和适应不良过程的地位下,评估辅助治疗的潜在途径,并强调AVR后心力衰竭管理的进一步研究领域。专家意见:针对干预时间的量身定制的策略,即个人患者对后负荷侮辱的反应,并承诺将来指导更好的管理。需要在干预之前对辅助药理和装置治疗进行进一步的临床试验,或者需要在干预之前促进反向重塑和恢复,以减轻心力衰竭和过量死亡的风险。