RNA技术是一种新兴领域,利用RNA的独特结构和功能特性来构建纳米级结构并调节复杂的生物系统(Stewart,2024)。RNA已显示成各种形状,大小和复杂性的结构,从而在分子传感,药物输送,免疫调节和细胞活性调节中实现应用(Chandler等,2021)。这项基础工作表明了RNA分子及其化学类似物的显着潜力,作为开发个性化诊断和治疗应用的生物材料,这是许多体外和体内研究的证明,并通过几种FDA批准的配方进行了例证。然而,诸如核酸酶稳定性,有针对性的RNA疗法的靶向递送,其免疫反应的调节以及必须进一步解决的检测极限等关键挑战,以将RNA纳米技术完全转化为临床应用。该研究主题重点介绍了RNA技术的最新进步和创新工作,用于各种RNA类别的诊断和治疗学。该研究主题由国际领导人在核酸技术,药物输送和计算研究领域策划的六项评论和研究文章。所有手稿都呈现出广泛的创新技术,这些技术包括基因疗法的设计和优化,RNA的产生,逻辑门控,组织工程和新治疗靶标的验证。
Design Methods of Signal Processing Systems: • Optimization of signal processing algorithms • Compilers and tools for signal processing systems • Algorithm-to-architecture transformation • Dataflow-based design methodologies Software Implementation of Signal Processing Systems: • Software on programmable digital signal processors • Application-specific instruction-set processor (ASIP) architec- tures and systems • SIMD, VLIW, and multi-core CPU architectures • GPU-based massively parallel implementation Hardware Implementation of Signal Processing Sys- tems: • Low power/complexity signal processing circuits & applica- tions • FPGA and reconfigurable architecture-based systems • System-on-chip and network-on-chip • VLSI for sensor network and RF identification systems • Quantum signal processing • Neuromorphic computing
文本数据在社会科学研究中继续蔓延,源于电子邮件,社交媒体帖子,调查,大型语言模型的生成文本等来源。与文档级元数据(例如作者人口统计学,时戳)的广泛可用性导致了结构主题模型(STM)(Roberts,Stewart,Stewart,Tingley,Lucas,Lucas,Leder-Luis,Luis,Luis,Gadarian,Gadarian,Gadarian,Albertson,Albertson,Albertson和Rand 2014; Roberts,Rand; Roberts; Robert和Stewart和Airloldi 2016 comporiative of Airnatiation of Airnatiation of Aira gation and Aira Meta 2016,以下情况下,该公司,以下情况下,以下情况下,以下情况下,以下情况下,该公司的统一性构成了它的统一性。更好地总结文本文档中的内容。该模型以及STM R软件包(Roberts,Stewart和Tingley 2019)允许研究人员发现主题并估算其关系,以通过对潜在主题普遍性的回归分析(用于主题的文档的比例)来记录元数据。
随着高通量下一代测序技术的发展和普及,OMICS方法逐渐成为现代生物学和医学研究的重要工具,例如基因组学,转录组学,蛋白质组学和放射线学。在早期,大多数研究都使用单个OMIC来介绍特定类型的生物分子类型,这些分子可能会产生不一致的生物标志物在OMICS类型的排名不同。随着OMICS的进步和成本效益,高质量的关键生物标志物以及分子途径和与疾病有关的监管网络可以通过具有多种类型的OMICS的共同呼叫多媒体来鉴定(Hasin等,2017)。在一项典型的多词研究中,人们将将疾病样本与对照组进行比较,并比较具有不同严重性或不同渐进阶段的样品,以探索疾病特异性或特定阶段的分子特征,直到进行进一步的实验验证,待进一步的实验验证。从患有特定疾病的患者的人口统计学和临床数据与多摩学数据的结合提供了一个独特的机会,可以充分利用包括机器学习和深度学习在内的尖端人工智能方法,以积累跨学科研究领域的知识和经验(Reel等,2021; Ballard等,2024)。最有用的分析是通过来自具有纵向信息的同一样本的多摩学数据,以阐明时间依赖时间的动态疾病进程特征。对于多方面且复杂的疾病,多摩变学可以定义具有不同内型的患者组,该患者由于其特定的潜在分子机制与表型连接基因型的特定潜在分子机制,该患者表现出异质的治疗反应(Tyler and Bunyavanich,2019年)。这些研究的发现可以为疾病的早期诊断,预测预测和实施最合适,最有效的治疗策略,从而改善患者的生活质量和实现个性化医学。最近,多摩尼克已被广泛用于人类疾病的研究,包括罕见疾病,癌症和其他常见疾病。例如,事实证明,它有助于预测乳腺癌对治疗的反应(Sammut等,2022),鉴定了人类大脑中阿尔茨海默氏病(AD)(AD)(Nativio等,2020)的表观遗传变化,以及
解决这些挑战要求从算法,实施和设计角度进行共同努力。首先,对高效Genai部署的算法优化至关重要。研究人员正在积极探索降低复杂性技术,以简化生成模型,而不会显着损害其性能。尽管最近的算法研究在修剪和量化方面取得了进展,但这种尺寸缩小的Genai模型仍然是资源密集的。因此,迫切需要使用硬件感知的Genai算法,同时保持出色的性能。迫切需要第二次,有效的电路和系统。为Genai的创新硬件和体系结构不断提出,旨在在可扩展性,灵活性和效率之间取得平衡。行业中的公司正在取得长足的进步,但是持续需要Genai的专业Genai加速器和节能计算范式。第三,用于加速电路和系统设计的Genai非常需要和有希望。genai还具有增强电子设计自动化(EDA)工具,模拟电路,优化模拟并加速验证的潜力。但是,在确保可靠性,效率和信任方面仍然存在挑战。
南极冰盖包含90%的世界冰川冰,并被季节性的浮冰包围,它们构成了地球气候系统不可或缺的一部分。然而,尽管目前这些区域的降水量在很大程度上是积雪主导的,但气候模型表明,将来,由于气候变化,南极冰盖和Sea-Ice将会经历更多的降雨。这可能会通过增加雪和冰的融化而产生明显的影响,这反过来会影响海冰范围和厚度,冰片质量平衡,全球海平面以及动植物的成功(包括企鹅菌落)。尽管这些影响严重,但在这些地区的雪和雨的变化的频率和强度仍然存在很大的不确定性。该项目旨在解决这一重要的知识差距,其中可能的研究方向包括:i)使用观察数据集(例如,基于卫星的基于卫星)来量化南极降雨的当前事件,并确定其相关的大气循环模式,并确定其与降雨相关的未来变化(及其相关的循环图案)的未来变化(ii)识别iPccagragrog的投影(及其相关的循环)。 (CMIP6)对于多种气候变化方案,当今至2100的全球气候模型。
12。目标2(a)增强的学习和参与度:开发计划署,UNEP-WCMC和联合国教科文组织共同支持通过生物多样性和生态系统服务网络(BES-NET)项目1作为一项财团,在德国联邦联邦部门的财务支持下,通过生物多样性和生态系统服务网络(BES-NET)项目1作为一个财产,通过环境,国际自然保护区和国际自然保护区的启动,通过生物多样性和生态系统服务网络(BES-NET)项目1作为财团,该计划1 Swedbio。为了激发IPBES评估主题围绕IPBES评估主题的科学实践对话(或“试验”),开发计划署一直与IPBES校友合作开发一系列试验性背景文档,量身定制和调整IPBES评估对特定区域和国家背景的关键信息和发现。
生物活性化合物是药物,细菌,真菌和海洋生物中发现的物质。天然和不自然的生物活性化合物都包括二级代谢产物及其衍生物,例如异丙型,异氟av虫,肽抗生素和生物碱的糖苷衍生物。这些化合物在各种领域都起着重要作用,包括药物和农业化学产品,化妆品,生物燃料和食品添加剂。从活生物体中提取和隔离天然产物在药物的生产中发挥了重要作用。与自然生物活性化合物一起,已开发出生成自然和非天然化合物的合成生物学。该研究主题提供了生物活性化合物合成生物学的最新进展,新兴的挑战和前景。与已用于生产天然生物活性化合物的模型微生物(大肠杆菌和酿酒酵母)一起,已开发出非惯性宿主用于工业产品的生物合成。Rojo等。与基于植物的生产系统相比,大肠杆菌和酿酒酵母的优势。同类植物衍生物的衍生物pterocarpans和Coumestans的产量通常很低,需要耗时的工业产品。为了克服这些局限性,工程的微生物已被用作替代pterocarpans和coumestans的生产滴度的替代方法。Giménez等。 回顾了素型真菌是在生物技术领域的新型平台开发的。Giménez等。回顾了素型真菌是在生物技术领域的新型平台开发的。最有利的纤维真菌包括在许多不同的底物和植物残留物上生长的能力,这些能力对圆形生物经济有关键的贡献。根据著名的全基因组序列