文本数据在社会科学研究中继续蔓延,源于电子邮件,社交媒体帖子,调查,大型语言模型的生成文本等来源。与文档级元数据(例如作者人口统计学,时戳)的广泛可用性导致了结构主题模型(STM)(Roberts,Stewart,Stewart,Tingley,Lucas,Lucas,Leder-Luis,Luis,Luis,Gadarian,Gadarian,Gadarian,Albertson,Albertson,Albertson和Rand 2014; Roberts,Rand; Roberts; Robert和Stewart和Airloldi 2016 comporiative of Airnatiation of Airnatiation of Aira gation and Aira Meta 2016,以下情况下,该公司,以下情况下,以下情况下,以下情况下,以下情况下,该公司的统一性构成了它的统一性。更好地总结文本文档中的内容。该模型以及STM R软件包(Roberts,Stewart和Tingley 2019)允许研究人员发现主题并估算其关系,以通过对潜在主题普遍性的回归分析(用于主题的文档的比例)来记录元数据。
主要关键词