多摩学数据的集成可以提供有关来自不同层的生物分子的信息,以系统地说明复杂的生物学。在这里,我们建立了一个多摩斯图集,其中包含132,570个转录本,44,473种蛋白质,19,970个磷蛋白和12,427架乙酰蛋白质,跨小麦植物和生殖相。使用此地图集,我们阐明了转录调节网络,翻译后修饰(PTM)的贡献以及转录水平对蛋白质丰度的贡献,以及小麦中的同性恋表达和PTM有偏见。与小麦发育和疾病有关的基因/蛋白质进行了系统的分析,从而确定了控制小麦晶粒质量和抗病性相关基因的种子蛋白的磷酸化和/或乙酰化修饰。最后,覆盖了Tahda9的独特蛋白质模块TAHDA9-TAP5CS1,该模块由TAHDA9指定TAP5CS1的去乙酰化,可通过增加的脯氨酸含量来调节对小麦冠状腐烂的抗小麦抗性。我们的Atlas对小麦和相关农作物中的分子生物学和育种研究具有巨大的希望。
M-01:1/2 英寸膨胀填料 M-02:钢筋混凝土基础,根据结构图 M-03:铝包木窗(外部预加工,内部涂底漆) M-04:高密度聚乙烯 (HDPE) 卫生间隔断;地板安装和高架支撑 M-05:木板条;室外级乙酰化黄松木材,涂漆(ACCOYA) M-06:工程木柱,涂漆(底漆柱),根据结构图 M-07:加厚板,参见结构图 M-08:玻璃纤维门,参见门附表 M-09:木屋顶椽,根据结构图 M-10:卫生设备,参见卫生图 M-11:粘结梁,根据结构图 M-12:涂漆 6 英寸聚氨酯装饰条 (BORAL) M-13:4 英寸预制铝制排水沟至落水管 M-14:预制铝制百叶窗 M-15:灯具,参见电气图 M-16:榫槽乙酰化黄松 (ACCOYA) M-17:基础绝缘:2 英寸刚性绝缘; 24 英寸最小值,双向 M-18:防雪挡板 M-19:连续屋脊通风口 M-20:未使用 M-21:防溅块 M-22:管道系统,参见机械图纸
能够产生稀有鞘氨碱(例如鞘氨酸和鞘氨酸)的微生物菌株的有效识别对于推进微生物发酵过程和解决工业需求的增加至关重要。wickerhamomyces ciferrii是一种非惯性酵母,自然会过量产生四乙酰基植物磷酸盐(TAPS);但是,其他有价值的鞘氨素碱基的产生,包括鞘氨醇,鞘氨酸和三乙酰基鞘氨醇,仍然是一个关键目标。在这项研究中,我们开发了一种新型的筛选方法,利用氟钠钠(一种选择性的荧光染料,它特异性地与非乙酰化的鞘氨酸鞘氨酸碱(鞘氨酸,鞘氨醇和植物磷酶)反应,同时对TAPS没有反应性。通过伽马射线诱变产生了W. ciferrii的突变库,并使用荧光激活的细胞分选(FACS)进行筛选。通过三轮分类分离出表现出高荧光强度的突变体,表明非乙酰化或部分乙酰化的鞘氨醇化碱基的产生,并通过HPLC分析进一步验证。这种方法成功地识别了三种突变菌株:P41C3(产生鞘氨酸),M01_5(鞘氨碱产生)和P41E7(产生三乙酰基肾上腺素产生)。中,p41c3突变体在摇动培养过程中达到了36.7 mg/l的鞘氨酸滴度,并伴随着TAPS产生的显着降低,表明代谢量的重定向。这项研究证明了荧光素钠作为用于鞘脂基碱产生菌株的选择性筛选染料的实用性,并为W. ciferrii代谢工程建立了有效的平台,以增强工业上重要的鞘脂的产生。
通过手术和放化疗相结合的方法,高达 90% 的 Wilms 肿瘤病例可以治愈,但诸如弥漫性间变性 Wilms 肿瘤等难治性肿瘤类型则带来了巨大的治疗挑战。我们的多组学分析揭示了一种独特的沙漠状弥漫性间变性 Wilms 肿瘤亚型,其特点是免疫/基质细胞耗竭、TP53 改变和 cGAS-STING 通路下调,占所有弥漫性间变性病例的三分之一。这种亚型还以 CD8 和 CD3 滤过率降低以及涉及组蛋白去乙酰化酶和 DNA 修复的致癌通路活跃为特征,与不良临床结果相关。这些致癌通路在间变性 Wilms 肿瘤细胞模型中被发现是保守的。我们认为组蛋白去乙酰化酶和/或 WEE1 抑制剂是这些肿瘤的潜在治疗弱点,它们也可能恢复肿瘤的免疫原性并可能增强免疫疗法的效果。这些见解为预测结果和针对个体免疫状况制定针对侵袭性儿童威尔姆斯肿瘤的个性化治疗策略提供了基础。
摘要:神经退行性疾病,例如帕金森氏病,阿尔茨海默氏病和亨特顿病,都以神经元和神经元功能障碍的进行性丧失鉴定和特征,导致认知和运动障碍。最近的研究表明,PTM的重要性,例如磷酸化,乙酰化,甲基化,泛素化,Sumoylation,硝化,硝化,截断,O-Glcnacylation和羟基化和羟基化,在NeuroDegeneration灾难的进展中。PTM可以改变蛋白质的结构和功能,从而影响蛋白质稳定性,定位,相互作用和酶活性。异常的PTM会导致蛋白质错误折叠和聚集,降解和清除,并最终导致神经元功能障碍和死亡。本综述的主要目的是概述与神经变性有关的PTM,其潜在机制,分离PTM的方法以及这些疾病的潜在治疗靶标。本文讨论的PTM包括tau磷酸化,α-突触核蛋白和狩猎蛋白泛素,组蛋白乙酰化和甲基化以及RNA修饰。了解PTM在神经退行性疾病中的作用可能为这些毁灭性疾病提供新的治疗策略。
组蛋白去乙酰化酶6(HDAC6)已被证明在细胞运动和侵袭体形成中起重要作用,因此HDAC6抑制被认为是一种有前途的癌症治疗表观遗传策略。目前,仅有少数化合物被报道为HDAC6抑制剂,亟待发现具有安全性和特异性的HDAC6抑制剂。本文以结构各异的HDAC6抑制剂为对象,通过基于配体的方法生成药效团模型,该模型含有两个氢键受体和两个疏水基团,采用基于药效团模型和分子对接相结合的虚拟筛选方法,筛选出潜在的HDAC6抑制剂。随后,采用体外酶结合抑制实验评价了命中化合物的HDAC6抑制活性。实验结果表明,在筛选出的6个化合物中,头孢哌酮钠对HDAC6的抑制作用最强,其IC 50 值为8.59±1.06 μM。头孢哌酮钠明显催化α-微管蛋白的高度乙酰化,但不催化组蛋白H3的高度乙酰化,证明头孢哌酮钠是一个选择性HDAC6抑制剂。鉴于HDAC6的表达在癌细胞转移中起重要作用,进一步通过划痕修复实验和Transwell小室实验研究了头孢哌酮钠对人胰腺癌PANC-1细胞迁移和侵袭的影响,发现头孢哌酮钠能明显抑制PANC-1细胞的迁移和侵袭。此外,通过分子对接揭示了抑制剂在晶体结构活性位点的结合模式,为HDAC6抑制剂的结构设计和优化提供参考价值。本研究为发现HDAC6活性抑制剂提供了一种系统的虚拟筛选方法,并发现了头孢哌酮钠对HDAC6的特异性作用,提示其在肿瘤治疗中具有潜在的应用价值。
近一个世纪以来,药物耐药的发生往往是由于靶酶表达下降,药物输出泵表达增加所致。靶基因表达的改变和输出泵功能的增加可能是由表观遗传学改变引起的,如甲基化状态的改变,以及组蛋白乙酰化状态的改变。此外,新开发的抗癌药物,包括激酶等小分子药物
摘要:研究表明,糖尿病会加速血管衰老,而血管衰老与慢性炎症和氧化应激有关,而这两者都与内皮功能障碍的发展有关。这种情况代表了将糖尿病与相关心血管 (CV) 并发症联系起来的最初变化。最近,有人假设乙酰转移酶 p300 可能有助于建立早期血管衰老表型,在导致内皮功能障碍的糖尿病相关炎症和氧化应激中发挥相关作用。具体而言,p300 可以通过表观遗传机制和转录因子乙酰化来调节血管炎症。事实上,它通过与活化 B 细胞 p65 亚基 (NF- κ B p65) 的核因子 κ 轻链增强子相互作用或诱导其乙酰化来调节炎症途径,表明 p300 作为 NF- κ B p65 和转录机制之间的桥梁发挥着至关重要的作用。此外,p300 介导的表观遗传修饰可能位于炎症细胞因子激活的上游,它们可能通过影响活性氧 (ROS) 的产生来诱导氧化应激。由于多项体外和体内研究揭示了乙酰转移酶抑制剂的潜在用途,因此更好地了解 p300 在糖尿病血管功能障碍中的作用机制可能有助于找到与糖尿病相关的心血管疾病临床管理的新策略。
潜伏 HIV-1 原病毒的转录沉默需要复杂且重叠的机制,这对体内消除 HIV-1 构成了重大障碍。我们开发了一种新的潜伏 CRISPR 筛选策略,称为潜伏 HIV-CRISPR,该策略使用将编码 guideRNA 的慢病毒载体基因组包装到出芽病毒体的上清液中,作为维持 HIV-1 潜伏期的因素的直接读数。我们开发了一个针对表观遗传调控基因的定制 guideRNA 库,并将筛选与潜伏期逆转剂(非典型 NF κ B 通路的激活剂 AZD5582)配对,以检查控制 HIV-1 潜伏期的机制组合。 ING3 是核小体乙酰转移酶 H4 组蛋白乙酰化 (NuA4 HAT) 复合物的组成部分,它与 AZD5582 协同作用,激活 J-Lat 细胞系和 HIV-1 潜伏期原代 CD4+ T 细胞模型中的原病毒。我们发现,ING3 的敲除会降低 H4 组蛋白尾部的乙酰化和 HIV-1 LTR 上的 BRD4 占有率。然而,ING3 的敲除与通过 AZD5582 激活非典型 NF κ B 通路相结合,导致 HIV-1 原病毒上 RNA 聚合酶 II 的启动和延长显著增加,这种方式在所有细胞启动子中几乎是独一无二的。
乳腺癌通常根据激素受体的表达情况分为亚型,而不考虑其他基因的克隆扩增。我们的实验室发现 14% 的乳腺癌患者有两种致癌基因热休克因子 1 (HSF1) 和细胞性粒细胞瘤病 (c-MYC) 的拷贝数扩增,这两种基因编码同名的转录因子。已知这些转录因子通过多种机制驱动癌症,包括增加干细胞、代谢和存活率。由于转录因子很难用药物靶向,我们旨在用染色质修饰剂的抑制剂间接抑制这些转录因子的活性。我们使用卵巢癌细胞系作为模型进行了药物筛选,以找到染色质修饰剂抑制剂,这些抑制剂可以选择性地杀死 HSF1 和 c-MYC 基因扩增的细胞。在药物筛选中,我们发现携带 HSF1- MYC 共扩增的细胞系对组蛋白去乙酰化酶 (HDAC) 抑制剂的敏感性高于没有这种共扩增的癌细胞系。我们的初步结果表明,HDAC 抑制剂 Entinostat 可降低 HSF1 和 c-MYC 蛋白水平,并降低其直接下游靶标的 mRNA 表达。我们的实验室将进一步研究组蛋白去乙酰化酶抑制剂 Entinostat 在含有 HSF1 和 c-MYC 扩增的癌症中降低 HSF1 和 c-MYC 的机制,以及 Entinostat 在这些癌症中的疗效。