摘要:微管蛋白去乙酰化酶 sirtuin 2 (Sirt2) 和组蛋白去乙酰化酶 6 (HDAC6) 的失调与癌症和神经退行性疾病的发病机制有关,因此这两种酶是药物干预的有希望的靶点。在此,我们报告了首创的双重 Sirt2/ HDAC6 抑制剂的设计、合成和生物学表征,作为双重抑制微管蛋白去乙酰化的分子工具。使用生化体外测定和基于细胞的靶标参与方法,我们确定 Mz325 ( 33 ) 是两种靶标酶的强效选择性抑制剂。Sirt2 和 HDAC6 与 33 的构造块复合物的 X 射线晶体结构进一步证实了对两个靶标的抑制。在卵巢癌细胞中,与单独或联合使用未结合的 Sirt2 和 HDAC6 抑制剂相比, 33 对细胞活力的影响增强。因此,我们的双重 Sirt2/HDAC6 抑制剂是研究微管蛋白去乙酰化双重抑制的后果和治疗潜力的重要新工具。■ 简介
建立了由8个组蛋白乙酰化相关基因组成的STAD预后模型,根据中位风险评分将STAD患者分为高危组和低危组,高危组的预后较低危组差。两组在体细胞突变、免疫亚型、临床病理特征、肿瘤微环境、免疫细胞浸润和免疫活性、免疫治疗预测和药物敏感性等方面存在明显差异。基因本体论(GO)和京都基因与基因组百科全书(KEGG)分析结果表明,两组中的差异表达基因(DEG)参与了与癌症相关的过程和途径。细胞分析表明,DCLK1是胃癌的促癌因子,可促进胃癌细胞对奥沙利铂产生耐药性。
蛋白质N-乙酰化是真核生物中最丰富的翻译和后翻译的修饰之一,将其扩展到血管植物内的叶绿体。最近,在拟南芥中揭示了一种新型的塑料酶家族,该酶家族包括八个表现出双赖氨酸和N末端乙酰化活性的乙酰基转移酶。其中,GNAT1,GNAT2和GNAT3揭示了明显的系统发育接近,形成了称为NAA90的亚组。我们的研究着重于特征性GNAT1,与状态过渡乙酰转移酶GNAT2密切相关。与GNAT2相比,GNAT1对状态转变并不是必需的,并且与高光条件下的野生型相比,没有明显的表型差异,而GNAT2突变体受到了严重影响。然而,GNAT1突变体显示出类似于GNAT2突变体类似的类似类似类似的类囊体膜。对重组GNAT1的体外研究表明,在合成底物肽上表现出耐药的N端乙酰化活性。 通过N末端乙酰基团在两个独立的GNAT1敲除线中通过N末端乙酰基团在体内确认了这种活性。 这将塑料蛋白上的几个乙酰化位点归因于GNAT1,反映了GNAT2的底物光谱的子集。 此外,共免疫沉淀与质谱法相结合,揭示了GNAT1和GNAT2之间的牢固相互作用,以及GNAT2与GNAT3的显着关联 - NAA90中的第三个乙酰转移酶。 这些发现引入了质体代谢中乙酰化依赖性调节中的新型调节层。对重组GNAT1的体外研究表明,在合成底物肽上表现出耐药的N端乙酰化活性。通过N末端乙酰基团在两个独立的GNAT1敲除线中通过N末端乙酰基团在体内确认了这种活性。这将塑料蛋白上的几个乙酰化位点归因于GNAT1,反映了GNAT2的底物光谱的子集。共免疫沉淀与质谱法相结合,揭示了GNAT1和GNAT2之间的牢固相互作用,以及GNAT2与GNAT3的显着关联 - NAA90中的第三个乙酰转移酶。这些发现引入了质体代谢中乙酰化依赖性调节中的新型调节层。这项研究揭示了叶绿体中至少存在两个乙酰基转移酶络合物的存在,因此复合物的形成可能对整个乙酰基转移酶活性的细节具有关键作用。
引言乳腺癌(BC)是最常见的癌症,与全球女性最与癌症相关的死亡人数最多。bc发生在青春期后的所有年龄段的女性中。在2022年,有230万妇女被诊断出患有卑诗省的妇女,在全球范围内造成约670,000人死亡1。尽管在早期检测和治疗BC方面取得了进展,但转移,但显着使治疗复杂化,并且仍然是癌症相关死亡的主要原因2,3。转移是指癌细胞从原发性肿瘤部位扩散以在不同解剖部位建立的过程2。这些扩散的细胞很难治疗,快速生长,并且会导致在转移部位4的器官衰竭。因此,了解驱动BC转移的详细分子机制对于制定更有效的治疗干预措施至关重要。α-微管蛋白的乙酰化是一种与BC进展和转移3,5-7相关的机制。 这是一种翻译后修饰(PTM),通常发生在α-微管蛋白的赖氨酸40上,这是一种与β-微管蛋白二聚体的关键蛋白。 这些异二聚体是在5,8细胞中形成微管(MTS)聚合以形成微管(MTS)的构件。 PTM,例如乙酰化和驱虫率与癌症的细胞转化有关9。 例如,α-微管蛋白的乙酰化已被证明可以增强细胞的附着,迁移和重新分析,从而为转移势7提供选择性优势7。α-微管蛋白的乙酰化是一种与BC进展和转移3,5-7相关的机制。这是一种翻译后修饰(PTM),通常发生在α-微管蛋白的赖氨酸40上,这是一种与β-微管蛋白二聚体的关键蛋白。这些异二聚体是在5,8细胞中形成微管(MTS)聚合以形成微管(MTS)的构件。PTM,例如乙酰化和驱虫率与癌症的细胞转化有关9。例如,α-微管蛋白的乙酰化已被证明可以增强细胞的附着,迁移和重新分析,从而为转移势7提供选择性优势7。这些修饰通常与癌症的结果不良和增强的转移能力相关,这为将其定为潜在治疗剂的基本原理7,9。该新闻通讯将探讨α-微管蛋白乙酰化在BC转移中的作用,其生物学意义及其治疗潜力。
壳聚糖是由114批量的Mahtani壳聚糖提供的,其乙酰化度(DA)为2%,由1 H NMR确定,质量平均摩尔质量(m w)为619 kg/mol,分散剂(ð)的分散剂(1.6),由尺寸 - 1.6,通过尺寸 - 散发性切除率确定。壳聚糖以1、2-丙二醇和ACOH(50/50 V/V)的水醇混合物中的0.5%(w/v)以0.5%(w/v)的形式进行乙酰基壳。在剧烈的机械搅拌下将壳聚糖(GLCN)单位的静态藻类添加到D-葡萄糖(GLCN)单元中,并混合18小时以达到靶向DA。然后将壳溶液通过纤维素膜过滤,孔径从3 µm降低至0.45 µm。乙酰化的壳聚糖最终用NH 4 OH沉淀,用去离子水洗涤并冷冻干燥。乙酰化的壳聚糖,DA为35%,M W的693 kDa和1.8的分散性。
抽象访问DNA是调节基因转录的第一级控制,该控制对于维持DNA完整性也至关重要。细胞衰老的特征是深刻的转录重排和DNA病变的积累。在这里,我们在H2BK120乙酰化中发现了一个表观遗传学的X介于C4和HD A C4和HD A C1 / HD A C2。HD A C4 / HD A C1 / HD A C2复合物通过H2BK120的动态脱乙酰化来调整通过同源重组的DNA修复效率。HD A C4的缺乏会导致H2BK120AC的积累,BRCA1的募集受损和CTIP募集到病变部位,累积DNA和衰老。在衰老细胞中,由于HD A C4的蛋白酶体降解增加,这种复合物被拆卸。在Ras诱导的衰老的HD A C4强迫表达降低了γH2AX的基因组扩散。 它也会影响H2BK120AC LE V ELS,在RAS诱导的衰老过程中积累的DNA受损区域中增加了。 总而言之,衰老过程中HD A C4的降解会导致DNA受损的积累,并有助于由维持衰老的超级增强剂控制的转录程序的激活。在Ras诱导的衰老的HD A C4强迫表达降低了γH2AX的基因组扩散。它也会影响H2BK120AC LE V ELS,在RAS诱导的衰老过程中积累的DNA受损区域中增加了。总而言之,衰老过程中HD A C4的降解会导致DNA受损的积累,并有助于由维持衰老的超级增强剂控制的转录程序的激活。
组蛋白去乙酰化酶 (HDAC) 是一类锌 (Zn) 依赖性金属酶,负责表观遗传修饰。HDAC 主要与在 DNA 水平上调节基因表达的组蛋白有关。这种严格的调节由组蛋白和非组蛋白的乙酰化 [通过组蛋白乙酰转移酶 (HAT)] 和去乙酰化 (通过 HDAC) 控制,这些蛋白会改变 DNA 的卷曲状态,从而影响基因表达作为下游效应。在过去的二十年里,HDAC 得到了广泛的研究,并被应用于一系列疾病,其中 HDAC 失调与疾病的出现和进展密切相关 - 最突出的是癌症、神经退行性疾病、艾滋病毒和炎症性疾病。HDAC 作为这些生化途径的调节剂参与其中,使其成为一个有吸引力的治疗靶点。本综述总结了为创造 HDAC 抑制剂 (HDACis),特别是 I 类 HDAC 而做出的药物开发努力,重点关注这些抑制剂的药物化学、结构设计和药理学方面。
摘要有丝分裂脱乙酰酶复合物 (MiDAC) 是一种最近发现的组蛋白脱乙酰酶 (HDAC) 复合物。虽然其他 HDAC 复合物与神经发生有关,但 MiDAC 的生理作用仍然未知。在这里,我们表明 MiDAC 是神经分化的重要调节器。我们证明 MiDAC 可作为神经发育基因表达程序的调节器,并与神经突生长的重要调节器结合。MiDAC 通过一种暗示启动子和增强子上 H4K20ac 去除的机制上调促神经基因(例如编码分泌配体 SLIT3 和 NETRIN1 (NTN1) 的基因)的表达。相反,MiDAC 通过减少神经发生负调节因子的启动子近端和远端元件上的 H3K27ac 来抑制基因表达。此外,MiDAC 的缺失会导致神经突生长缺陷,可以通过补充 SLIT3 和/或 NTN1 来挽救。这些发现表明 MiDAC 在调节 SLIT3 和 NTN1 信号轴的配体以确保神经突发育的正确完整性方面发挥着至关重要的作用。