表观遗传学是指所有在不改变基因序列的情况下调节基因表达的可逆、可遗传过程。研究表明,DNA和组蛋白可以发生甲基化和乙酰化等化学修饰(仅对组蛋白而言),这些修饰可以引导DNA缠绕在组蛋白周围[5],并决定染色质的压缩。这些化学修饰通常被称为表观遗传“标记”。DNA和组蛋白之间的相互作用可以导致真染色质构象,在这种构象下基因可接近并因此被激活,或者导致异染色质构象,在这种构象下基因无法接近并因此受到抑制[6]。除了DNA和组蛋白修饰之外,其他机制也参与表观遗传调控,如核小体定位[7]和非编码RNA[8]。在这里,我们选择关注与衰老相关的研究最多的 DNA 和组蛋白修饰,尽管重要的是不要忘记所有表观遗传机制都是相互联系、相互影响的 [ 9 , 10 ]。例如,DNA 甲基化失调会诱导
Accoya USA任命分享物流为全球供应链服务提供商Kingsport,田纳西州,2024年9月4日,Accoya USA,LLC是Accsys Technologies与Eastman Chemical Company之间的合资企业,已与全球供应链服务提供商签订了与股份物流的长期服务合同。Accoya USA已在美国田纳西州金斯波特(Kingsport)建造了新的Accoya®木材生产设施,该设施最近开始商业生产为北美市场服务。共享物流将通过所有全球入站(原材料)流,存储,物质物流和出站(成品)流量为公司提供支持。”任命分享物流为我们的长期战略供应链合作伙伴是一个合乎逻辑的选择,” Accoya USA董事总经理Rod Graf解释说。“它已经与ACCYS具有长期的服务关系和记录,因此团队对我们的产品和相关过程非常熟悉。此外,Share Logistics在北美拥有强大的业务,并能够为我们提供真正综合的服务产品。”共享物流集团首席执行官Tristan Bierenbroodspot评论说:“我们很荣幸被美国Accoya USA这样的公司任命,并期待支持该公司实现其对北美市场的增长野心”。此任命后,Share Logistics在田纳西州苏格纳斯维尔开设了一个新办公室和仓库,与Accoya USA在Kingsport的新工厂接近。bierenbroodspot继续说:“除了我们更广泛的团队和全球网络,拥有自己的本地和敬业的存在,是提供一流的集成服务产品的关键”。金斯波特(Kingsport)的木材生产工厂将复制荷兰Accsys Technologies生产设施的成功设计和技术,其容量为80,000m3。Accoya USA设施最初将通过两个乙酰化反应堆提供约43,000m3(约1800万英尺)的每年生产能力,在荷兰的Arnhem站点复制Accsys的成功设计,技术和流程。与Accsys的荷兰设施一样,Kingsport工厂的设计结合了设备和空间,以通过添加更多的乙酰化反应堆来实现未来的扩展。Accoya USA和Share Logistics致力于建立弹性和可持续的供应链。
乳腺癌脑转移(BCBM)通常会导致末期诊断,并且由于缺乏脑穿透剂药物而受到阻碍。大脑中的肿瘤依赖于乙酸乙酰辅酶A乙酰辅酶A的转化为乙酰辅酶A合成酶2(ACSS2),这是脂肪酸合成和蛋白乙酰化的关键调节剂。 在这里,我们使用计算管道来识别新型的脑渗透ACSS2抑制剂结合了基于药丸的形状筛选方法与吸收,分布,代谢和排泄(ADME)性质预测。 我们确定了AD-5584和AD-8007的化合物,这些化合物已通过特定结合的ACSS2进行了验证。 用AD-5584和AD-8007处理BCBM细胞会导致菌落形成,脂质储存,乙酰-COA水平和细胞存活的体外显着降低。 在体内脑肿瘤切片模型中,用AD-8007和AD-5584处理可减少预成型肿瘤,并在阻断BCBM肿瘤生长的情况下随着辐射而协同作用。 AD-8007治疗减轻了肿瘤负担和体内延长的生存率。 这项研究确定了对乳腺癌脑转移有效率的选择性脑渗透ACSS2抑制剂。大脑中的肿瘤依赖于乙酸乙酰辅酶A乙酰辅酶A的转化为乙酰辅酶A合成酶2(ACSS2),这是脂肪酸合成和蛋白乙酰化的关键调节剂。在这里,我们使用计算管道来识别新型的脑渗透ACSS2抑制剂结合了基于药丸的形状筛选方法与吸收,分布,代谢和排泄(ADME)性质预测。我们确定了AD-5584和AD-8007的化合物,这些化合物已通过特定结合的ACSS2进行了验证。用AD-5584和AD-8007处理BCBM细胞会导致菌落形成,脂质储存,乙酰-COA水平和细胞存活的体外显着降低。在体内脑肿瘤切片模型中,用AD-8007和AD-5584处理可减少预成型肿瘤,并在阻断BCBM肿瘤生长的情况下随着辐射而协同作用。AD-8007治疗减轻了肿瘤负担和体内延长的生存率。这项研究确定了对乳腺癌脑转移有效率的选择性脑渗透ACSS2抑制剂。
sirtuin 6(SIRT6)是一种多面蛋白脱乙酰基酶/脱酰基酶,也是小分子寿命和癌症的主要靶标。在染色质的背景下,SIRT6在核小体中去除组蛋白H3的乙酰基,但是其核小体底物偏好的分子基础尚不清楚。我们的冷冻 - 与核小体复合体中人类SIRT6的电子显微镜结构表明,SIRT6的催化结构域从核小体入门位点pries DNA pries DNA,并通过使用呼吸酶锚固的组蛋白酸性贴剂结合了组蛋白H3 N末端螺旋,而SIRT6 Zinc Zinc结合域则与SIRT6 Zinc 6 Zinc结合域结合。此外,SIRT6与组蛋白H2A的C末端尾巴形成抑制作用。该结构提供了有关SIRT6如何脱乙酰化H3 K9和H3 K56的见解。
抽象的脂肪组织是一种重要的内分泌器官,可调节哺乳动物的代谢,免疫反应和衰老。健康的脂肪细胞促进组织稳态和寿命。sirt1是一种保守的NAD +依赖性脱乙酰基酶,通过脱乙酰化和抑制PPAR-γ来负调节成型分化。然而,在小鼠中淘汰小鼠中的米氏干细胞(MSC)不仅会导致成骨的缺陷,而且还导致脂肪组织的丧失,这表明SIRT1在脂肪分化方面也不受欢迎。在这里,我们报告说,MSC中SIRT1功能的严重损害在成脂分化过程中引起了明显的缺陷和衰老。仅在脂肪生成过程中抑制SIRT1时观察到这些,而不是在脂肪生成分化之前或之后施加SIRT1抑制时。细胞产生高水平的活性氧
蛋白质后翻译修饰(PTM)是一种调节机制,用于调节,定位,表达和与其他细胞分子的相互作用。它涉及在蛋白质的氨基酸残基上添加或去除特定的化学基团。其共同形式包括磷酸化,泛素化,甲基化和乙酰化。新兴研究强调了乳酸化,琥珀酰化和糖基化。PTM参与重要的生物学过程。疾病的发生和发展取决于蛋白质的丰度,并受到各种PTM的调节。此外,肿瘤免疫疗法的进步表明,蛋白质PTM也参与了肿瘤微环境中免疫细胞的增殖,激活和代谢重编程。这些PTM在肿瘤免疫疗法中起重要作用。在这篇综述中,我们全面总结了几种PTM在肿瘤免疫疗法中的作用。本综述可以为肿瘤免疫疗法提供新的见解和未来研究方向。
去泛素化是调节蛋白质稳态的翻译后修饰的一种重要形式。卵巢肿瘤结构域的蛋白质(OTUDS)亚家族成员OTUD3被鉴定为参与调节各种生物学过程(例如免疫和影响)的去泛素化酶。这些生理过程中的干扰会引发人类和动物的疾病,例如癌症,神经退行性疾病,糖尿病,乳腺炎等。otud3在肿瘤中异常表达,是一把双边剑,在影响癌细胞增殖,转移和代谢的不同类型的肿瘤中发挥肿瘤促成或抗肿瘤作用。otud3在转录水平上通过许多microRNA(例如miR-520h,miR-32和miR101-3p)调节。此外,OTUD3受到许多翻译后修改(例如乙酰化和泛素化)的调节。因此,了解OTUD3表达的调节机制可以帮助您深入了解其在人类免疫和疾病中的功能,从而将其用作诊断或治疗疾病的治疗靶点的可能性。
摘要 背景 基因组筛查发现,在对免疫检查点阻断 (ICB) 有耐药性的肿瘤中存在干扰素-γ (IFN γ) 通路缺陷。然而,其非突变调控和治疗发展的可逆性仍不太清楚。 目的 我们旨在鉴定与 ICB 耐药性相关的可用药组蛋白去乙酰化酶 (HDAC),并开发一种针对肝细胞癌 (HCC) 患者的易于转化的联合治疗方法。 设计 我们通过单细胞 RNA 测序将来自 pembrolizumab 试验 (NCT03419481) 的 HCC 患者的预后结果与所有 HDAC 亚型的肿瘤细胞表达相关联。我们使用免疫分析、单细胞多组学和染色质免疫沉淀测序研究了选择性 HDAC 抑制在 4 种 ICB 耐药原位和自发模型中的治疗效果和作用机制,并通过基因调控和共培养系统进行验证。结果 HDAC1 / 2 / 3 表达较高的 HCC 患者表现出 IFN γ 信号传导缺陷,并且在 ICB 治疗中生存率较差。选择性 I 类 HDAC 抑制剂 CXD101 的短暂治疗使 HDAC1/2/3 高肿瘤对 ICB 疗法重新敏感,导致 CD8 + T 细胞依赖性抗肿瘤和记忆 T 细胞反应。从机制上讲,CXD101 与 ICB 协同作用,通过增强染色质可及性和 IFN γ 反应基因的 H3K27 过度乙酰化来刺激 STAT1 驱动的抗肿瘤免疫。肿瘤内募集 IFN γ + GZMB + 细胞毒性淋巴细胞进一步促进 CXD101 诱导的 Gasdermin E (GSDME) 的裂解,从而以 STAT1 依赖的方式触发细胞焦亡。值得注意的是,GSDME 的缺失模仿了 STAT1 敲除,通过阻止细胞焦亡和 IFN γ 反应消除了 CXD101-ICB 联合疗法的抗肿瘤功效和生存益处。结论我们的免疫表观遗传策略利用 IFN γ 介导的网络来增强癌症免疫循环,揭示了自我强化的 STAT1-GSDME 细胞焦亡回路作为正在进行的 II 期试验的机制基础,以应对 ICB 耐药性(NCT05873244)。
免疫疗法(IT)代表了癌症治疗方面的显着成就[1]。肿瘤免疫疗法通过重新启动肿瘤免疫周期并恢复人体的天然抗肿瘤免疫反应来起作用[2]。目前,至少有四种主要的免疫疗法策略,其中包括免疫检查点抑制剂(ICIS),例如程序性细胞死亡蛋白1(PD-1)和细胞毒性T淋巴细胞抗原4(CTLA-4),嵌合抗原受体T-Cell受体T-Cell Therof actapy,Tumory pacocine and Tumory pacocines,thmory和Peripications and Peripatications和Peripaticationcation。尽管这些疗法已广泛成功,但增强了临床肿瘤结局[2],但并非所有患者都从中受益[1]。因此,对于从免疫疗法中获得最多的筛查至关重要[2]。肿瘤异质性可能是由于遗传,表观遗传和转录修饰等多种因素而产生较低治疗疗效的原因。蛋白质表达变化;以及代谢谱的变化[3]。最近,人们非常关注翻译后修饰(PTMS),这些变化是对单个氨基酸的小变化,例如糖基化,乙酰化,乙酰化,磷酸化,棕榈酰化和泛素化或泛素化或去泛素化。已经发现这些PTM具有改变蛋白质与其他分子的功能,形状,平衡和相互作用的能力。此外,最近的研究表明,PD-1和程序性细胞死亡配体1(PD-L1)的表达水平可以受到表观遗传,转录和转录后系统的调节,从而影响肿瘤免疫[4,5]。在这种情况下,多词的方法结合了基因组学,转录组学,蛋白质组学,代谢组学,放射组学和免疫学,有助于揭示肿瘤中存在的各种层次,并探索蛋白质内的双重性,并探索蛋白质丰富的蛋白质,代表性地表现出跨性别的细胞表达,摩尔纳的形式和基因型的摩擦性,基因构图,基因构想,基因构图,基因范围,基因范围,莫尔纳(MRNA)的概述,莫尔纳(MRNA)的概述,莫尔娜癌症以及肿瘤 - 免疫间隔机制,鉴定出新的潜在生物标志物和免疫疗法靶标,并促进与免疫疗法相关的独特分子特征的鉴定
历史上,骨和软组织肉瘤的治疗是采用手术、化疗和放疗相结合的方法。尽管局部治疗效果最佳,但 40% 的软组织肉瘤患者会出现转移,转移性疾病患者的预后仍然不佳 [1, 2]。因此,这类患者显然需要新的治疗策略。多项临床前数据表明,包括 DNA 甲基化和组蛋白乙酰化在内的表观遗传变化通过修饰基因转录促成发病机制 [3]。事实上,染色质结构改变和相关的表观遗传修饰因子与骨和软组织肉瘤的肿瘤发生有关,这些结果为针对这类患者群体的表观遗传修饰的新药研发提供了可能性 [4–8]。本综述旨在概述表观遗传相关靶向药物的临床前开发及其在骨和软组织肉瘤中的临床应用。我们分析了涉及表观遗传控制各层的治疗靶点,包括