tng260:一种新型,口服活性的corest选择性脱乙酰基酶抑制剂,用于治疗STK11-突变体癌症
抽象的严重急性呼吸道综合征冠状病毒-2(SARS-COV-2)及其机制已由世界各地的研究人员进行了彻底研究,希望能找到答案,以帮助发现新的治疗方案或预防有效手段。仍然,大流行的两年多,这是医疗保健和经济系统的巨大负担,似乎还有更多的问题。2019年冠状病毒疾病引起的特征和众多免疫反应(COVID-19)因炎症系统的不可控制的激活而异,从而导致广泛的组织损害,从而导致严重甚至致命的疾病,导致患者的轻度或无症状感染,导致患者的主要感染,导致当前的Pervication of Pressivical of Pressivical of Pressivical ovection。该研究的目的是将有关SARS-COV-2的免疫反应的可用数据系统化,以在可用的知识中提供一些澄清。该评论包含有关对Covid-19的最重要免疫反应的简洁和当前信息,包括先天和适应性免疫的组成部分,并额外着重于利用体液和细胞反应作为有效的诊断工具。此外,作者还讨论了有关SARS-COV-2疫苗的当前知识状态及其在免疫缺陷情况下的功效。
1 Quaid-i-azam大学伊斯兰堡化学系,伊斯兰堡,巴基斯坦,巴基斯坦2号药学系,巴哈瓦尔布尔伊斯兰大学药学院,巴哈瓦尔布尔伊斯兰大学,巴哈瓦尔布尔,巴基斯坦,3个,基础医生,数学和人类,dawoood and Dawoood and Trace and Technology ofernace and Technology of Ergentering and Technology of Ergineing and Technoical of Ergineing and Technogiation and Teprion of Ergineing and Technoical of Ergine and Technoce沙特阿拉伯利雅得国王大学药学学院化学学院化学学院,萨特阿拉伯利雅得国王萨特大学科学学院5号生物化学系,巴哈瓦尔布尔药学学院6,巴哈瓦尔布尔医学院,巴哈瓦尔邦巴基斯坦,伊斯兰堡大学伊斯兰堡大学化学系8,巴基斯坦,伊斯兰堡,伊斯兰堡,9,物理学系,工程学院,哈塞特普大学,安卡拉,土耳其安卡拉,土耳其10号,密西西比州立大学,斯塔克维尔10号化学系
癌细胞增殖并促进血管生成。[10] NEU5AC并不是唯一具有生物学重要性的神经氨酸。neu5,9AC 2也已被指出在调节糖蛋白的免疫系统和稳定性方面起着作用。在癌症发展,自身免疫性状况和感染中可能作用。[11]由于存在额外的乙酰官能团,与NEU5AC相比,与NEU5AC相比,这些角色归功于不同的特征,例如增加的疏水性,大小和氢键。[12]在癌细胞中也观察到了NEU5,9-AC 2的表达。[13] neu4,5ac 2仅在某些脊椎动物中表达,例如单人类,[14]豚鼠[15]和马[16],在破坏细菌和病毒活性中起着作用。由于存在于NEU4,5AC 2中存在的突出的4位乙酰基组构成的结合位点中的空间障碍,因此存在破坏。[14,16]
摘要:弓形虫病的病原体,弓形虫弓形虫(T. gondii),是一种人畜共患的原生动物,可以影响包括人类在内的温血动物的健康。到目前为止,一种具有完全保护的有效疫苗仍然无法访问。在这项研究中,构建了编码T. gondii组蛋白脱乙酰基酶SIR2(PVAX1-SIR2)的DNA疫苗。用于增强效能元,壳聚糖和poly(D,l-乳酸 - 糖 - 糖)酸(PLGA)用于设计带有DNA疫苗的纳米球,称为PVAX1-SIR2/CS和PVAX1-SIR2/CS和PVAX1-SIR2/PLGA纳米球。将PVAX1-SIR2质粒转染到HEK 293-T细胞中,并通过激光扫描共聚焦显微镜评估表达。然后,在实验室动物模型中评估了PVAX1-SIR2质粒,PVAX1-SIR2/CS纳米球和PVAX1-SIR2/PLGA纳米球的免疫保护。体内发现表明PVAX1-SIR2/CS和PVAX1-SIR2/PLGA纳米球可以产生混合的Th1/Th2免疫反应,如受调节的抗体和细胞因子的受调节的产生所示,成熟和组成(MHC)的表达(MHC)的表达(MHC)的表达(dccompositience)的表达(dcandrien)的表达(dcandrien)是dccompositient的表达。增殖和CD4 +
表观遗传调节,包括乙酰化,甲基化,磷酸化和泛素化,在基因表达的调节中起关键作用。组蛋白乙酰化 - 组蛋白乙酰转移酶(HATS)和组蛋白脱乙酰基酶(HDAC)的活性之间的平衡 - 是关键的表观遗传事件之一。我们对HDAC在癌症中的作用的理解正在发展。许多HDAC同工酶在多种恶性肿瘤中过表达。异常组蛋白乙酰化与肿瘤抑制基因失调有关,导致几种实体瘤和血液学恶性肿瘤的发展。临床前研究表明,HDAC-1基因表达与肺癌进展有关。组蛋白低乙酰化与肺腺癌中更具侵略性的表型有关。HDAC抑制剂(HDACI)具有多效细胞作用,并诱导凋亡基因/蛋白质的表达,导致细胞分化和/或细胞周期停滞,抑制血管生成,并抑制过渡到间质表型。 因此,用HDACI治疗在非小细胞肺癌(NSCLC)细胞系中显示出抗增殖活性。 尽管在临床前研究中有希望的结果,但HDACI在肺癌临床试验中仅显示出适度的单药活性。 HDAC激活被认为是引起化学疗法,分子靶向治疗和免疫检查点抑制的机制之一。 因此,将HDACI与这些试剂相结合以增强其效率或反向抵抗力的兴趣越来越大。HDAC抑制剂(HDACI)具有多效细胞作用,并诱导凋亡基因/蛋白质的表达,导致细胞分化和/或细胞周期停滞,抑制血管生成,并抑制过渡到间质表型。因此,用HDACI治疗在非小细胞肺癌(NSCLC)细胞系中显示出抗增殖活性。尽管在临床前研究中有希望的结果,但HDACI在肺癌临床试验中仅显示出适度的单药活性。HDAC激活被认为是引起化学疗法,分子靶向治疗和免疫检查点抑制的机制之一。因此,将HDACI与这些试剂相结合以增强其效率或反向抵抗力的兴趣越来越大。在本文中,我们回顾了在NSCLC中使用HDACI的可用临床前和临床证据。我们还审查了排除HDACI作为癌症疗法和未来方向的广泛临床实用性所面临的挑战。
剂量强化化疗已纳入当代治疗方案;但是,这增加了在治疗过程中的毒性负担和幸存者的晚期影响。1,2迫切需要确定新的疗法以改善结果。组蛋白脱乙酰基酶抑制作用似乎是KMT2A -R婴儿的有前途的治疗策略,我们最近的化学基因组分析确定了romidepsin的潜力。romidepsin被证明可以增强Cytarabine的体外活性,Cytarabine是婴儿所有疗法的关键成分,当与高剂量细胞蛋白酸酯结合使用时,体内信号鉴定出体内信号。3在这项研究中,我们研究了romidepsin和Cytarabine之间的体内协同作用,确定了这种组合的体内毒性,并探索了romidepsin对DNA损伤对细胞丁滨的影响的影响。所有体内实验均由澳大利亚珀斯Telethon Kids Institute动物伦理委员会批准。为了确定治疗组成后的药物毒性和功效,用1x10 6每-785A细胞接种了7周的女性点头/SCID小鼠。PER-785a是具有t(4; 11)易位的遗传表征的细胞系。3对于所有体内研究,当人类CD19 +或CD45 +细胞的百分比在骨髓(BM)中达到1%时,开始药物治疗,这是每种模型的白血病细胞动力学的广泛映射所识别的(在线补充图S1)。治疗计划模仿当代临床试验设计的概念。注射。治疗三周。目前,在诱导疗法对互化化学疗法主链的诱导治疗后正在研究新的药物,因此在低疾病负担的设置中引入了4个,而不是在BM中明显明显的诊断疾病的诊断。小鼠被随机分为五组五只小鼠,并在第12天通过腹膜(i.p.)由车辆控制组成的治疗组; 1.5 mg/kg romidepsin在星期一和星期四两次/周;星期一至周五,低剂量的Cytarabine(5 mg/kg)五次;星期一至周五,高剂量细胞押次(100 mg/kg)五次; 1.5 mg/kg romidepsin和低剂量细胞蛋白酶的联合疗法。在治疗小鼠综合后三天被处死,并通过用抗人类CD19-APC抗体的流式细胞仪测量BM中人类CD19 +细胞的百分比来确定白血病。 在牺牲时,通过心脏穿刺从每只小鼠那里获得0.2 mL的血液,并进行了完全的血数,以确定每个队列的骨髓抑制性程度。 单人活性在Romidepsin的BM中的平均百分比为66.6%(P <0.01),低剂量Cytara-Bine的平均百分比为66.6%(p <0.01),27.3%(p <0.01)(图1A)。 通过联合疗法的结合疗法和降低为3.8%浸润的平均值(p <0.0001),白血病负担的减少显着增强(图1A)。 尽管用高剂量细胞押滨治疗获得了BM的白血病细胞的清除率,但小鼠在治疗小鼠综合后三天被处死,并通过用抗人类CD19-APC抗体的流式细胞仪测量BM中人类CD19 +细胞的百分比来确定白血病。在牺牲时,通过心脏穿刺从每只小鼠那里获得0.2 mL的血液,并进行了完全的血数,以确定每个队列的骨髓抑制性程度。单人活性在Romidepsin的BM中的平均百分比为66.6%(P <0.01),低剂量Cytara-Bine的平均百分比为66.6%(p <0.01),27.3%(p <0.01)(图1A)。通过联合疗法的结合疗法和降低为3.8%浸润的平均值(p <0.0001),白血病负担的减少显着增强(图1A)。尽管用高剂量细胞押滨治疗获得了BM的白血病细胞的清除率,但小鼠
Zearalenone(ZEN)是一种由几种在谷物和农产品中发现的镰刀菌产生的非甾体雌激素霉菌毒素。Zen与农场动物和人类的霉菌毒性有关。ZEN的毒性作用众所周知,但是尚未确定碱性彗星测定法评估Zen诱导的Chang肝细胞中氧化DNA损伤的能力。这项研究的第一个目的是评估彗星测定法测定Zen Toxin诱导的细胞毒性和DNA大坝的程度,第二个目的是研究N-乙酰半胱氨酸酰胺(NACA)保护细胞以保护细胞免受Zen诱导的毒性的能力。在彗星测定中,通过量化尾部范围矩(TEM;任意单位)和尾部长度(TL;任意单位)来评估DNA损伤,这些损伤用作SCGE中DNA链断裂的指标。通过抑制细胞增殖并诱导氧化DNA损伤,介导Zen在变肝细胞中的细胞毒性作用。增加ZEN的集中度增加了DNA损伤的程度。用Zen毒素治疗后,DNA迁移的程度和尾部的细胞百分比显着增加(P <0.05)。与高浓度的Zen毒素(250 p m)的细胞治疗相比,用低浓度的Zen毒素(25 p m)处理Zen毒素(25 p m)的治疗诱导的DNA损伤水平相对较低。氧化DNA损伤似乎是Chang肝细胞中Zen诱导的毒性的关键决定因素。在暴露于任何浓度的ZEN之前先用NACA预先处理细胞时,观察到细胞溶解性的显着降低和氧化DNA损伤。我们的数据表明ZEN在Chang肝细胞中诱导DNA损伤,NACA的抗氧化活性可能有助于通过消除氧化应激减少Zen诱导的DNA损伤和细胞毒性。
抽象的化学抗性可能是由于白血病干细胞(LSC)的存活率静止,对化学疗法反应或不反应于化学疗法,也不在AML细胞的内在或获得的耐药性上。在这里,我们发现在良好的LSC标记中,只有CD123和CD47与细胞系和患者样品之间的AML细胞化学敏性相关。进一步的研究表明,与父母细胞系相比,化学固定线中CD123 + CD47 +细胞的百分比显着增加。然而,在抗性细胞中,干性信号基因并未显着增加。相反,基因变化富含细胞周期和细胞存活途径。这表明CD123可以用作化学抗性的生物标志物,而不是AML细胞的茎。我们进一步研究了表观遗传因子在调节化学耐毒性白血病细胞存活中的作用。表观遗传药物,尤其是组蛋白脱乙酰基酶抑制剂(HDACIS),有效诱导化学耐药细胞的凋亡。此外,HDACI romidepsin在很大程度上反转了抗性细胞的基因表达和有效的靶向靶向并去除了异种移植AML小鼠模型中的化学耐药性白血病爆炸。更有趣的是,romidepsin优先靶向CD123 +细胞,而化学疗法药物ARA-C主要靶向快速生长CD123-细胞。因此,单独或与ARA-C结合使用romidepsin可能是化学耐药患者的潜在治疗策略。