抽象访问DNA是调节基因转录的第一级控制,该控制对于维持DNA完整性也至关重要。细胞衰老的特征是深刻的转录重排和DNA病变的积累。在这里,我们在H2BK120乙酰化中发现了一个表观遗传学的X介于C4和HD A C4和HD A C1 / HD A C2。HD A C4 / HD A C1 / HD A C2复合物通过H2BK120的动态脱乙酰化来调整通过同源重组的DNA修复效率。HD A C4的缺乏会导致H2BK120AC的积累,BRCA1的募集受损和CTIP募集到病变部位,累积DNA和衰老。在衰老细胞中,由于HD A C4的蛋白酶体降解增加,这种复合物被拆卸。在Ras诱导的衰老的HD A C4强迫表达降低了γH2AX的基因组扩散。 它也会影响H2BK120AC LE V ELS,在RAS诱导的衰老过程中积累的DNA受损区域中增加了。 总而言之,衰老过程中HD A C4的降解会导致DNA受损的积累,并有助于由维持衰老的超级增强剂控制的转录程序的激活。在Ras诱导的衰老的HD A C4强迫表达降低了γH2AX的基因组扩散。它也会影响H2BK120AC LE V ELS,在RAS诱导的衰老过程中积累的DNA受损区域中增加了。总而言之,衰老过程中HD A C4的降解会导致DNA受损的积累,并有助于由维持衰老的超级增强剂控制的转录程序的激活。
铁在人体中具有重要作用,并影响各种生理过程。一些研究表明,铁水平的失调与包括精神分裂症在内的不同精神疾病的发展之间存在联系。在精神分裂症患者中,已经观察到了大脑特定区域中铁的异常水平。铁水平可能有助于精神分裂症与其他遗传,环境和饮食因素结合使用。铁还可以有助于精神分裂症患者的认知功能更好,并且由于这组患者的频繁营养不良和营养不足,至关重要的是要考虑到常规血液学检查以及确定必要的营养缺乏症。
肥胖是一个日益增长的公共卫生问题,其流行率在过去的五十年中已经增加了两倍。已经表明,肥胖与心脏能量代谢的改变有关,这反过来又在心力衰竭发育中起着重要作用。在肥胖期间,心脏高度依赖于脂肪酸氧化作为其主要能源(ATP),而葡萄糖氧化的贡献显着降低。这种代谢不足与降低心脏效率和收缩功能障碍有关。尽管众所周知,肥胖期间心脏能量代谢的改变与心力衰竭发育的风险有关,但控制这些代谢变化的分子机制尚不完全了解。最近,已证明代谢酶的翻译后蛋白质修饰在肥胖症中观察到的心脏能量代谢变化中起着至关重要的作用。了解这些新型机制对于开发新的治疗选择以治疗或预防肥胖个体的心脏代谢改变和功能障碍很重要。本综述讨论了肥胖期间翻译后的乙酰化变化及其在肥胖期间介导心脏能量代谢扰动及其治疗潜力中的作用。
au:Pleaseconfirmthatalleadinglevelsarerepredcorrectedcorcely:在日常生活中,我们遇到需要在潜在的奖励和相关成本(例如时间和(例如)努力的情况下进行权衡的情况。文献表明多巴胺在延迟和努力折现中的重要作用,对人类的延迟分解而混合。此外,纹状体中多巴形和胆碱能传播之间的相互拮抗相互作用表明乙酰胆碱在这些过程中的潜在对手作用。我们发现多巴胺D2(氟哌啶醇)和乙酰胆碱M1受体(Biperiden)拮抗对健康人的基于努力决策的特定组成部分的影响:氟哌啶醇减少,而Biperiden增加了付出体力努力的意愿。相比之下,在氟哌啶醇下减少了延迟打折,但不受Biperiden的影响。一起,我们的数据表明,在D2受体上作用的多巴胺可以调节努力和延迟折现,而对M1受体作用的乙酰胆碱似乎仅对努力打折产生更具体的影响。
引言脑动脉畸形(AVM)是最有血管畸形(1,2);这些由动脉(A-V)分流器组成,这些分流器直接从动脉传递到静脉的血液,绕过脑组织,这些脑组织已变得异常(1-4)。(1-4)。由于A-V分流器中的血管异常和血液升高引起的,血管最终可能破裂并引起与高死亡率相关的出血性中风(1-5)。生存的患者,许多人遭受永久残疾,神经系统缺陷,癫痫发作和头痛(1-4)。当前,没有针对脑AVM的主要预防措施(2)。骨形态发生蛋白(BMP)信号与脑AVM有关。BMP I型受体激活素受体样激酶1(ALK1)的突变导致遗传性出血性尾2型(HHT2),其特征是多个器官中存在AVM(6,7)。ALK1共肽的内生突变导致HHT1(8,9)。BMP抑制剂矩阵GLA蛋白(MGP)由ALK1信号传导诱导,并为BMP活性提供反馈调节(10-14)。 MGP的损失导致大脑,肺,肾脏和视网膜的AVM(13、15,矩阵GLA蛋白(MGP)由ALK1信号传导诱导,并为BMP活性提供反馈调节(10-14)。MGP的损失导致大脑,肺,肾脏和视网膜的AVM(13、15,
中枢神经系统中乙酰胆碱(ACH)神经元在较高的大脑功能(例如注意力,学习和记忆以及运动)过程中需要协调神经网络活动。在许多神经推测和神经退行性疾病中都描述了受干扰的胆碱能信号传导。此外,其他信号分子(例如谷氨酸和GABA)与ACH的共透析与脑功能或疾病中的基本作用有关。但是,在发育过程中ACH神经元变得胆碱能何时尚不清楚。因此,了解胆碱能系统如何发展和活跃的时间表是理解大脑发育的关键部分。为了研究这一点,我们使用转基因小鼠将ACH神经元与TDTomato有选择性标记。我们在产前和产后发育期间在不同时间点成像了串行切片的大脑,并产生了全脑重建。我们发现了三个关键的时窗 - 在产前两个,一个在产后大脑中 - 大多数ACH神经元种群在大脑中胆碱能。我们还发现,胆碱能基因表达是在皮质ACH室中启动的,而大脑皮质由基础前脑的胆碱能投射神经元支配。综上所述,我们表明ACH神经元种群存在并在产后第12天之前变为Cho-Linergic,这是主要感觉过程的开始,例如听力和视力。我们得出的结论是,ACH神经元的诞生和胆碱能基因的启动在发育过程中是时间分离的,但由大脑解剖结构高度协调。
溶酶体分解并回收脂质和其他生物分子,以维持各种营养环境中的细胞稳态。溶酶体脂质分解代谢依赖于BIS(Monoacylglycero)磷酸盐(BMP)的刺激活性,这是一种神秘的脂质,其在众多溶酶体相关疾病中都会改变其左旋脂质。在这里,我们回顾了半个世纪前对BMP的发现及其结构特性,可促进脂质水解酶的激活和募集其共激活因子。我们进一步讨论了对BMP分解代谢和合成代谢的当前但不完整的理解。To conclude, we discuss its role in lysosome-associated diseases and the potential for modulating its levels by pharmacologically activating and inhibiting the BMP synthase to therapeu- tically target lysosomal storage disorders, drug-induced phospholipidosis, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, cancer, and viral infection.
摘要:尽管执行了最佳药物治疗(OMT),但晚期心力衰竭(ZS)的特征是耐火症状和频繁再住院。 div>由于患有心血管疾病的危险因素和人口衰老的患者数量增加,末端ZS的div>越来越大,这是卫生保健系统的巨大临床挑战和负担。 div>预测是一种不良疾病,其死亡率为25%至75%。 div>鉴于OMT是一种有限的效果,在治疗此类患者时,考虑了涉及心脏移植和机械循环支持的先进治疗方法。 div>心脏移植是末端ZS的黄金标准,但是由于供体器官数量有限,并且存在某些禁忌症,因此将无法使用这种方法对患者进行治疗。 div>短期机械循环装置可用于治疗心源性休克和急性加剧,以恢复决策,恢复,孔孔或心脏移植的升级,恢复,升级。 div>长期左心室支撑装置被安装为倒带到心脏移植或作为永久意识到心脏移植的患者的目的地治疗。 div>充分使用心脏移植的主要挑战是捐助者的需求和外观之间的不成比例,这需要候选人的最佳排练以及资源的更好合理化。 div>对于成功的结果至关重要。 div>为时已晚,无法将这些患者转到移植中心进一步限制治疗选择。 div>尽管机械循环支持设备的技术取得了进步,但它们的全部潜力仍然有限,对右心室,欠发达的完整体内系统,平民或可及性以及安装后可能不需要的事件的足够长期支撑,例如通道,长号,长号,长号或出血。 div>在这项检查中,对终末Z患者的治疗挑战进行了综述,对疾病本身,药物治疗和使用晚期治疗方法的使用。 div>
组蛋白去乙酰化酶 (HDAC) 催化组蛋白和非组蛋白上乙酰化修饰的去除,从而调节基因表达和其他细胞过程。HDAC 抑制剂 (HDACi) 是一种已获批准的抗癌药物,有望成为治疗心脏病的新疗法。在许多心脏病临床前动物模型中都观察到了 HDACi 的心脏保护作用。已经开发了遗传小鼠模型来了解每种 HDAC 在心脏功能中的作用。一些发现是有争议的。在这里,我们概述了 HDACi 和 HDAC 在生理或病理条件下如何影响心脏功能。我们重点关注锌依赖性经典 HDAC 的体内研究,强调涉及心脏肥大、心肌梗死 (MI)、缺血性再灌注 (I/R) 损伤和心力衰竭的疾病状况。特别是,我们回顾了无偏组学研究如何帮助我们理解 HDACi 和 HDAC 对心脏影响的潜在机制。
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于2024年6月2日。; https://doi.org/10.1101/2024.05.29.596481 doi:Biorxiv Preprint