摘要:该研究的目的是评估以雾的形式在历史A-BSM对象的纺织品表面上以雾形式应用的杀菌效率和80%和90%的乙醇的作用。从A-BSM中的纺织品表面分离出来用于测试的微生物,即cladosporium cladosporium cladosporium cladosporioides,niger和chrysogenum。枯草芽孢杆菌,金黄色葡萄球菌,曲霉菌和尼日尔曲霉也从美国型培养物中(ATCC)中使用。织物样品以10 5 –10 6 CFU/mL的浓度接种微生物。以雾形式以80%和90%的浓度应用。 用于此目的的喷枪VL 0819和VE 0707使用,其压力为0.2 MPa,使用直径为1.05 mm的PA头VLH-5喷嘴。 为了在施用乙醇雾后获得更有效的消毒,在21°C±1℃的条件下将样品存储在PE箔中22±1 h。应用乙醇雾后,使用扫描电子显微镜(SEM)评估了材料的性质的变化。 以薄雾的形式减少了现代棉质织物上的微生物数量,其浓度为80%和90%,从93.27%到99.91%的真菌,从94.96%到100%到100%到100%,除了B. tilliss B. tilliss的74.24%以外。 在历史织物上,在施用90%乙醇的时间缩短为4 s之后,微生物减少了99.93%以上,金黄色葡萄球菌被完全消除。以雾形式以80%和90%的浓度应用。用于此目的的喷枪VL 0819和VE 0707使用,其压力为0.2 MPa,使用直径为1.05 mm的PA头VLH-5喷嘴。为了在施用乙醇雾后获得更有效的消毒,在21°C±1℃的条件下将样品存储在PE箔中22±1 h。应用乙醇雾后,使用扫描电子显微镜(SEM)评估了材料的性质的变化。以薄雾的形式减少了现代棉质织物上的微生物数量,其浓度为80%和90%,从93.27%到99.91%的真菌,从94.96%到100%到100%到100%,除了B. tilliss B. tilliss的74.24%以外。在历史织物上,在施用90%乙醇的时间缩短为4 s之后,微生物减少了99.93%以上,金黄色葡萄球菌被完全消除。应用了测试的消毒技术后,在模型和历史棉花表面没有观察到纤维形态的变化。
定量图像分析(QIA)是一种简单且自动化的工具,用于过程监测,当与化学计量技术结合使用时,可以使微生物群形态变化的关联与各种歌剧参数。To that effect, principal component analysis, multilinear regression, and ordinary least squares methods were applied to the obtained dataset of the biotransformation conditions for Y. lipolytica through the monitor of yeast morphology, substrates (glycerol, L-phenylalanine - L-Phe) consumption and metabolites (2- phenylethanol – 2-PE) production was developed.甘油和L-PHE通过Pro PRO的方法成功监测,尽管对2-PE的监测能力较低,并且主要与酵母,簇和簇的大小和比例有关,酵母含量和簇簇的天线。化学计量方法还允许鉴定与实验以600 rpm,600/400 rpm的搅拌速度变化相关的SIG明显的形态修饰(600 rpm,持续24 h,400 h,直到400 rpm),直到实验结束)和pH值为5.5至7.5。这项工作首次证明了QIA与化学计量分析相结合可以被视为一种有价值的工具来监测生物技术过程,即通过分析酵母和簇状形态来监测Y. lipolytica的2-PE生产。
细菌 Clostridium cellulolyticum 是整合生物加工 (CBP) 的有希望的候选者。然而,需要进行基因工程来提高这种生物的纤维素降解和生物转化效率,以满足标准的工业要求。在本研究中,CRISPR-Cas9n 用于将高效的 β -葡萄糖苷酶整合到 C. cellulolyticum 的基因组中,破坏乳酸脱氢酶 ( ldh ) 表达并降低乳酸产量。与野生型相比,工程菌株的 β -葡萄糖苷酶活性增加了 7.4 倍,ldh 表达减少了 70%,纤维素降解增加了 12%,乙醇产量增加了 32%。此外,ldh 被确定为异源表达的潜在位点。这些结果表明,同时进行 β -葡萄糖苷酶整合和乳酸脱氢酶破坏是提高 C. cellulolyticum 中纤维素到乙醇的生物转化率的有效策略。
总部位于贝克斯菲尔德的加州公司 Great Valley Energy, LLC 评估了利用圣华金谷专门种植的甜高粱生产乙醇和增值产品的可行性。从 2011 年冬季开始,在 CEC 的部分资助下,Great Valley Energy 在三个生长季内种植了几种甜高粱;在贝克斯菲尔德建造并运营了一个试点示范工厂;收集了作物特性和技术数据以支持工程设计;评估和设计了多种生物精炼厂配置;分析了各种配置产品的市场;围绕这些配置制定了温室气体概况;并确定了技术和经济可行性。本报告包括 Great Valley Energy 的工作成果,包括来自我们战略合作伙伴和顾问的意见。
工业微生物学乙醇的产生:乙醇(乙醇)Ch 3 Ch 2 OH可以通过合成化学方法或发酵产生。乙醇(也称为生物乙醇)是通过富含葡萄糖或蔗糖培养基的发酵产生的,在没有氧气的情况下,酒精的产生最佳。最常见的乙烯类微生物是酵母菌,其中包括酿酒酵母,Schizosacachomyces spp。,Candida spp。,Kluyveromyces Lactis,Pichia spp。,Pichia spp。细菌,例如Mobilis,梭状芽孢杆菌和leuconostoc mesenteroides也参与了酒精发酵。参与这些酒精发酵的酵母主要是酿酒酵母的菌株,不能直接发酵淀粉。使用乙醇(1)用作化学饲料库存:在化学工业中,乙醇在许多化学过程中都是中间体。(2)溶剂使用:乙醇在行业中广泛用作染料,油,蜡,化妆品等的溶剂等。(3)一般公用事业:酒精被用作医院中的消毒剂,在家中进行清洁和照明,在实验室中,仅次于水作为溶剂。(4)燃料:乙醇与高达10%的汽油或汽油混合,被称为Gasohol。乙醇产生的生物化学该过程从糖通过糖甲酸糖(EMP)途径(EMP)途径开始,然后在厌氧条件下通过丙酮酸型脱羧酶在厌氧条件下转化为乙醛。乙醛进一步释放了两个分子的二氧化碳,并通过酒精脱氢酶形成乙醇。
冲动控制障碍(ICD)是帕金森氏病(PD)接受多巴胺替代疗法的患者的令人痛苦的神经精神综合性。最普遍的形式包括强迫性购物,病理赌博,过度性和过度饮食,所有这些形式都以委员会明确地从事过度和不适当的行动来奖励项目。据报道,多巴胺激动剂1,2诱导的PD患者的患病率为17%至60%,而且很少是左旋多巴。3批判性地,ICD可能会变得足够严重,以使患者处于财务毁灭,婚姻和家庭分裂,起诉和与工作有关的问题的风险增加。迄今为止,处理两种临床路线:减少多巴胺能剂量,而牺牲了帕金森氏症或深脑刺激的牺牲,以降低多巴多克药物,同时保持运动能力。4,5因此,PD中的ICD目前没有方便的医疗服务。
Mangifera Indica(MI)或芒果叶作为铜抑制剂已被研究。在乙醇溶剂中提取Mi,并以1 M HCl溶液中不同浓度的0、0.4、0.6和0.8 mg/ml制备,以模仿腐蚀性环境。由UV-VIS分光光度计分析的预先准备的MI提取器在约370 nm处显示肩峰,这是由芳族C = C = C = C = C = C = C = C = C = C = C = O)功能的N→π*电子过渡产生的。傅立叶变换红外光谱(FTIR)发现,MI提取物表现出芳族C = C,C = O酚类化合物,C-OH和C-O拉伸振动的组。电化学阻抗光谱(EIS)和TAFEL图分析评估了以0.6 mg/mL浓度达到的最佳腐蚀抑制铜。结果由腐蚀电位的正转移,e Corr,较低的腐蚀电流,i Corr和腐蚀速率(CR)分别为-0.233 V,4.39 µA/cm 2和0.05 mm/yr。使用冶金显微镜评估腐蚀测试后铜底物的表面形态显示出由于MI提取物的分子吸附而引起的巨大腐蚀抑制。
摘要:玉米种子中积累了大量的淀粉,被人类和动物用作食物。玉米淀粉是生产生物乙醇的重要工业原料。生物乙醇生产的一个关键步骤是通过α-淀粉酶和葡糖淀粉酶将淀粉降解为寡糖和葡萄糖。此步骤通常需要高温和额外的设备,导致生产成本增加。目前,仍然缺乏专门设计的具有优化淀粉(直链淀粉和支链淀粉)组成的用于生物乙醇生产的玉米品种。我们讨论了适合高效酶消化的淀粉颗粒的特征。迄今为止,在玉米种子中淀粉代谢的关键蛋白质的分子表征方面已经取得了很大进展。本综述探讨了这些蛋白质如何影响淀粉代谢途径,特别是在控制淀粉的组成、大小和特征方面。我们强调了关键酶在控制直链淀粉/支链淀粉比率和颗粒结构方面的作用。基于目前利用玉米淀粉生产生物乙醇的工艺流程,我们提出可以通过基因工程改变几种关键酶的丰度或活性,以在玉米种子中合成易降解的淀粉颗粒。本综述为开发用于生物乙醇工业的专用玉米品种提供线索。
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2023年1月4日。 https://doi.org/10.1101/2023.01.03.522596 doi:biorxiv Preprint
乙醇混合汽油储存非常关键,因为该储存需要具有高质量内部涂料/衬里的耐水罐。由于乙醇具有增加燃料中辛烷值的较高趋势,因此将其与商业燃料混合在一起。出于上述原因,乙醇分别存储在水箱中,并根据需求将其与燃料混合。相反,乙醇具有吸收水分的高亲和力。乙醇中溶解的氧气和水显着参与金属溶解/腐蚀。有趣的是,在某些条件下,溶解氧会引发乙醇氧化成酸,从而导致培养基的酸度和腐蚀增加。因此,HPGRDC的目的是为无水乙醇和加斯霍尔培养基开发一种具有成本效益和新颖的腐蚀抑制剂(HP- EGIN)。该图表示HP-Egin对不同乙醇混合物和培养基中的优惠券(从左到右)的影响,并且(i)在乙醇中 - 无
