DNA是从“自下而上”构建几乎任意几何形状的超分子结构的非凡材料,在纳米结构的合理设计中提供了提高的精度。结构DNA纳米技术在近年来取得了巨大的发展,并促进了使用DNA链的自组装的自我组装来形成的两种和三个尺寸的复杂纳米结构,其相互作用的相互作用是通过其基本序列设计来编程的。在这些技术中,DNA折纸技术在自下而上的纳米结构的自下而上制造方面特别有用,范围从数十到数百个纳米。[1]通常,通过与数百种合成的“主食”寡核苷酸杂交将7-KBase DNA支架链折叠成结构,从而允许形成各种结构。[2]
在这项研究中,在侦察飞行过程中研究了无人机(UAV)的热量映射。在文献中首次选择了覆盖完整的飞行信封(从起飞到降落)的升降机方法的升降机的无人机。升力自我方法的结果表明,该方法是分析无人机及其组件破坏的有利工具。通过比较不同的飞行点的结果来提出自我破坏水平,并且可以看到它在攀登开始时最大值,而在闲逛期间则最小。同样,相对计算的无人机子系统中的驱散破坏,并表明发动机子系统是最高的。此外,对所有无人机子系统都提出了升力驱动消耗,并计算出燃料和机身子系统消耗最高的升力热量。升降机的充气方法可用于评估不同的空中车辆,例如客机,军用飞机等。根据这项研究,用于未来的研究。引用了这篇文章:YasinSöhret,AliDinç,“通过侦察飞行信封对无人机的热映射”,《航空与太空技术杂志》,第1卷。15,编号1,pp。35-45,2022年1月。birkeşifuçuşzarfıBoyuncabirİha'nınEkserjiharitalaması
摘要:结肠癌的异质性及其反应既提出了个性化医学的挑战和希望。挑战是开发以预测性和预后生物标志物为指导的有效的生物学个性化的治疗剂。目前,有几类候选生物标志物,包括基因组探针,抑制性RNA,免疫功能障碍的测定法,并且不容忘记,具体的组织病理学和组织化学特征。要开发有效的治疗学,候选生物标志物必须在可比的独立人群中获得资格和验证,这不小。这一过程及其随后在临床实践中的部署不仅涉及生物标志物与治疗的牢固关联,而且还要仔细注意代表性肿瘤部位选择的平淡无奇的方面,从而获得了完全充分的样本,该样本被保留并准备好优化高质量分析。将来,生物标志物分析结果的临床实用性将在人工智能技术的帮助下从相关的临床和基础科学数据中受益。通过应用个性化的,精选的生物标志物,对结肠癌的全面解释,个性化,更有效,更毒性的疗法将得到实现,从而实现了个性化医学的承诺。
xylariace nemania灰色8结束。rosellinia sp。8结束。xylaria longons 8结束。xylaria sp。7,8结束。增量incresses&Broome)Petch 5,7,8结束。令人难以置信的令人难以置信的增量增量我是微基植物,sp。7结束。杂波(preuss)囊。4 SAPR。 当地的基地卫生部(佩克)是一个好的法院。 7结束。 hygrocybet(Schaeff。) P. Kumm。 7结束。 Atheliaa aththematics Amphinema sp。 7结束。 纤维曲霉(Burt)Donk 7结束。 Boletasae Books Shipping(Fr.) vizzini 7结束。 tylopilus sp。 7结束。 平方小 quél。 7结束。 ceratobasics sp。 7结束。 peniophorae spani peniophorae sp。 7结束。 rufus lactarius(scop。) fr。 7结束。 wrimp fr。 7结束。 thelephorae thelephorae stuppet(link)stalpers 7端。 sess incetes &Schwein。) Parmas 7结束。4 SAPR。当地的基地卫生部(佩克)是一个好的法院。7结束。hygrocybet(Schaeff。)P. Kumm。7结束。Atheliaa aththematics Amphinema sp。7结束。纤维曲霉(Burt)Donk 7结束。Boletasae Books Shipping(Fr.)vizzini 7结束。tylopilus sp。7结束。平方小quél。7结束。ceratobasics sp。7结束。peniophorae spani peniophorae sp。7结束。rufus lactarius(scop。)fr。7结束。wrimp fr。7结束。thelephorae thelephorae stuppet(link)stalpers 7端。sess incetes&Schwein。)Parmas 7结束。
近距离微型无人机摄影测量用于建筑调查 L. Carnevali 1、E. Ippoliti 1、F. Lanfranchi 1、S. Menconero 1、M. Russo 1*、V. Russo 2 1 罗马大学建筑历史、表现与修复系,00161 罗马,意大利 - (laura.carnevali、elena.ippoliti、fabio.lanfranchi、sofia.menconero、m.russo)@uniroma1.it) 2 Errealcubo 工作室,40137 博洛尼亚,意大利 - ing.valentinarusso@gmail.com 第 II/WG II/2 委员会 关键词:微型无人机、建筑调查、立面采集、数据比较、仪器验证 摘要:历史立面的调查存在几个瓶颈,主要与几何结构、装饰框架、自然或人工障碍物的存在、环境限制有关。城市环境带来了额外的限制,受地面采集活动的约束,导致建筑数据丢失。TLS 和近距离摄影测量的集成允许覆盖这些东西,但不能克服由于地面视角而产生的阴影效应。去年,无人机在调查活动中的大量使用扩大了调查能力,加深了对建筑分析的了解。与此同时,不同国家出台了几项行为规则,规范了无人机在不同领域的使用,严重限制了它们在城市地区的应用。最近,已经出现了非常小巧轻便的平台,可以部分克服这些规则限制,为非常有趣的未来场景开辟了道路。本文介绍了一种非常小的 RPAS(不到 300 克)的应用,配备了一台低成本相机,用于对博洛尼亚(意大利)一座历史建筑立面进行近距离摄影测量调查。建议的分析试图指出系统的准确性和细节采集能力。本文的最终目的是验证该新平台在建筑测量流程中的应用,拓展近景摄影测量在建筑采集过程中的未来应用。