对文献的评论发现,从粉状煤层(PC)粉状电厂的燃烧后捕获和储存CO 2的能量惩罚的估计值中,有4个系数。我们通过从热力学原理中得出能量惩罚的分析关系,并确定哪些变量最难约束来阐明这种扩散的原因。我们将CCS的能量罚款定义为必须将其用于CCS的燃料部分,以固定固定数量的工作输出。该罚款可以表现为维持发电厂输出所需的额外燃料,或者是恒定燃油输入的输出损失。,只有可用的可用废热和第二律分离效率的比例受到限制。我们为11%的能源罚款提供了绝对的下限,我们证明了在多大程度上增加可用垃圾热恢复的比例可以减少所报告的较高值的能量损失。进一步认为,将很容易获得40%的能源罚款,而29%之一则代表一个体面的目标价值。此外,我们分析了美国PC工厂的分布,并计算出使用CO 2捕获和存储(CCS)操作所有这些工厂所需的额外燃料的分布。
在未来三十年,利用二氧化碳捕获、利用和储存 (CCUS) 来缓解能源系统的影响将变得越来越重要。由于不减排的化石燃料使用似乎与 1.5°C/2°C 目标不相容,预计采用 CCUS 的煤炭和天然气的中位水平将分别增加到 10 EJ 和 20 EJ。二氧化碳捕获和利用 (CCU) 可能是一种重要的温室气体减排机会,与当前情况相比,可以使主要工业产品(例如水泥、甲醇)的温室气体排放量减少 50-70%。综合评估模型结果显示,CCUS 的使用可能会使发电厂和化石燃料储备的搁浅减少 50% 以上。在这种情况下,通过 CCUS 的使用,全球收益将达到 1-2 万亿美元。
废物能源化 (EfW) 是一种废物管理方法,将社会卫生服务与能源和热能回收相结合。EfW 工艺安全地燃烧残余废物并产生电能和热能。EfW 设施可以结合点源碳捕集技术,从废物燃烧产生的烟气中去除二氧化碳 (CO₂),从而将二氧化碳浓缩并输送至下游进行长期封存,例如通过封存在地质构造中。目前,作为 EfW 工艺输入的废物中化石碳和生物碳的比例约为 50/50。生物碳来自废物流中的生物质,是生物圈自然碳循环的一部分。如果没有 EfW 工艺,这些生物质会发生生物降解,将生物碳释放到大气中。在 EfW 设施中使用碳捕集与封存 (CCS) 技术,可以将生物碳从生物圈碳循环中永久移除,从而产生大气负排放,并由此产生二氧化碳移除 (CDR) 信用额。 EfW 不仅可作为 CDR 途径发挥作用,还具有许多共同优势,包括:
新型二氧化碳去除(CDR),例如具有碳捕获和存储的生物能源以及直接捕获碳捕获和储存的直接空气,以实现中国到2060年达到碳中准的目标,此外还需要快速排放减少和基于常规的CDR。正在取得显着的进步,以通过许多国家和自愿碳市场推进这些技术。然而,不确定性在其可伸缩性以及潜在的风险和权衡方面仍然存在,并具有其他可持续发展目标。中国可以基于现有知识来基于其国内环境扩展该国的CDR投资组合,同时确保减少排放工作不会受到危害。需要对CDR选项的绩效和影响进行全面评估,以帮助为政策决策提供信息。专门的研究,开发,示范支持以及稳健的测量,报告和验证系统对于加速扩大规模和引进私人投资至关重要。
图 1. Pt 电催化剂的设计和表征。(a)Pt 基 LCB 中 CO 2 转化过程示意图。(b)CO 2 、Li 和 Li 2 CO 3 在 Pt 表面不同取向上的吸附行为侧视图和(c)相应吸附能的比较。(d)Li 2 CO 3 在 Pt 表面不同取向上的分解能。(e)不同电极的 XRD 分析。(f)HTS 后电极的详细表面结构和 TEM 观察(比例尺 = 200 nm)。
沉积过程的一种非常特殊的情况是所谓的外延沉积,或者只是外延。该专业局部旨在将材料沉积到单晶模板上,生长为单晶层。半核心设备制造链中的第一步之一是在空白硅晶片上沉积外延硅。这是在外交过程中完成的。经常运行这些过程,一次仅处理一个晶圆(即单个晶圆处理)或少数数字(即多窃听或迷你批次)。
开发了一种用于低温沉积二氧化硅的新光化学反应。在此过程中,硅烷在真空紫外线照射下与二氧化氮发生反应。报告了在 1006C 下生长的薄膜的电气和机械性能。硅上金属氧化物半导体结构的电容电压测量表明界面态密度 <5 10 11/cm 2。讨论了几种可能的反应机制,并提出了表明表面光化学可能是
二氧化碳(CO 2)通过矿化捕获,利用和储存(CCU)已被证明可减少独立植物中的温室气体(GHG)排放,而且还可以减少大规模气候供应链中的二氧化碳和储存率(GHG)的排放。然而,通过矿化实施大规模供应链为CCUS实施大规模的CCU,需要大量的金融投资,因此对其经济学有深刻的了解。目前的文献估计了独立植物的CO 2矿化经济学。CO 2矿化工厂具有特定的a)CO 2供应,b)固体原料供应,c)能源供应和d)产品市场,但工厂级成本估计并不能说明大型且潜在的共享供应链。在我们的研究中,我们通过在欧洲设计和分析CCU的成本优势供应链来评估矿化的经济学。我们的结果表明,避免了供应链中各个矿化厂的CO 2E减排成本范围为110至312欧元 /吨。通过矿化而提出的CCUS供应链可以避免欧洲的60吨Co 2e /年以2E减排成本可与CO 2捕获和地质存储相当。此外,我们确定了五个可以为CO 2矿化提供强大业务案例的地点。因此,分析显示了如何将CO 2矿化添加到欧洲的温室气体缓解组合中的途径。
二氧化碳羽状地热 (CPG) 发电厂可利用地质储存的二氧化碳发电。本研究介绍了一种灵活二氧化碳羽状地热 (CPG-F) 设施,该设施可利用地质储存的二氧化碳提供可调度电力、储能或同时提供可调度电力和储能——提供基载电力并使用可调度储能进行需求响应。研究发现,CPG-F 设施比 CPG 发电厂可提供更多的电力,但每日发电量较低。例如,CPG-F 设施在 8 小时内(8 小时-16 小时工作周期)产生 7.2 MW e,比 CPG 发电厂提供的电力高 190%,但每日发电量从 60 MW e-h 下降了 61% 至 23 MW e-h。 CPG-F 设施专为不同持续时间的储能而设计,其资本成本比 CPG 发电厂高 70%,但比大多数为特定持续时间设计的 CPG-F 设施高出 4% 至 27%,同时产生的电力比 CPG 发电厂多 90% 至 310%。CPG-F 设施旨在从提供 100% 可调度电力转换为 100% 储能,其成本仅比仅为储能而设计的 CPG-F 设施高出 3%。
